Log in

Improved Wear Resistance of a Heterogeneous CoCrNi Medium-Entropy Alloy at Cryogenic Temperature

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Medium-entropy alloys (MEAs) exhibit excellent mechanical properties and unique deformation mechanism at cryogenic temperatures. However, limited studies have been conducted to explore their cryogenic temperature wear behaviors and thus hinder their further cryogenic applications. Here, we report a mono-phased heterogeneous CoCrNi MEA composed of fully recrystallized grains and non-recrystallized grains that shows a favorable combination of strength and ductility. Meanwhile, a decreased coefficient of friction and improved wear resistance are revealed with the decreasing temperatures (0 °C → –120 °C). The wear mechanism shows an apparent transition from brittle fracture to mild plastic deformation when temperature decreases. The enhancement of strength-ductility for heterogeneous CoCrNi MEA at lower temperature leads to a reduction of ploughing coefficient and superior plastic response, thus resulting in excellent wear resistance. The present work provides a convenient route for preparing strength-ductility balanced and wear-resistant alloys for cryogenic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    CAS  Google Scholar 

  2. Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Google Scholar 

  3. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Google Scholar 

  4. Li, W., **e, D., Li, D., Zhang, Y., Gao, Y., Liaw, P.K.: Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 118, 100777 (2021)

    CAS  Google Scholar 

  5. George, E.P., Raabe, D., Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019)

    CAS  Google Scholar 

  6. Du, Y., Zhou, Q., Pei, X., Wang, H., Wang, H., Liu, W.: Enhancing the tribological performance of the TiZrHfCuBe high entropy bulk metallic glass by Sn addition. Tribol. Int. 171, 107529 (2022)

    CAS  Google Scholar 

  7. Lu, K., Knöpfle, F., Chauhan, A., Litvinov, D., Schneider, M., Laplanche, G., Aktaa, J.: Elevated-temperature cyclic deformation mechanisms of CoCrNi in comparison to CoCrFeMnNi. Scripta Mater. 220, 114926 (2022)

    CAS  Google Scholar 

  8. Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292–303 (2017)

    CAS  Google Scholar 

  9. Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163 (2016)

    CAS  Google Scholar 

  10. An, Q., An, R., Wang, C., Wang, H.: Ductile-to-brittle transition in fracture behaviors of common solder alloys over a temperature range down to −150 °C. Mater. Today Commun. 29, 102962 (2021)

    CAS  Google Scholar 

  11. Yang, K., Li, Y., Hong, Z., Du, S., Ma, T., Liu, S., **, X.: The dominating role of austenite stability and martensite transformation mechanism on the toughness and ductile-to-brittle-transition temperature of a quenched and partitioned steel. Mater. Sci. Eng. A 820, 141517 (2021)

    CAS  Google Scholar 

  12. Rackwitz, J., Yu, Q., Yang, Y., Laplanche, G., George, E.P., Minor, A.M., Ritchie, R.O.: Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy. Acta Mater. 200, 351–365 (2020)

    CAS  Google Scholar 

  13. Yang, M., Zhou, L., Wang, C., Jiang, P., Yuan, F., Ma, E., Wu, X.: High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scripta Mater. 172, 66–71 (2019)

    Google Scholar 

  14. Guo, N., Zhao, Y., Long, S., Song, B., Hu, J., Gan, B., Chai, L., Guo, S.: Microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures. Mater. Sci. Eng. A 797, 140101 (2020)

    CAS  Google Scholar 

  15. Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013)

    CAS  Google Scholar 

  16. Sohn, S.S., Kwiatkowski da Silva, A., Ikeda, Y., Kormann, F., Lu, W., Choi, W.S., Gault, B., Ponge, D., Neugebauer, J., Raabe, D.: Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31, 1807142 (2019)

    Google Scholar 

  17. Chang, R., Fang, W., Yan, J., Yu, H., Bai, X., Li, J., Wang, S., Zheng, S., Yin, F.: Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations. J. Mater. Sci. Technol. 62, 25–33 (2021)

    CAS  Google Scholar 

  18. He, F., Yang, Z., Liu, S., Chen, D., Lin, W., Yang, T., Wei, D., Wang, Z., Wang, J., Kai, J.J.: Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. Int. J. Plasticity 144, 103022 (2021)

    CAS  Google Scholar 

  19. Lu, K.: Making strong nanomaterials ductile with gradients. Science 345, 1455–1456 (2014)

    CAS  Google Scholar 

  20. Wu, X., Jiang, P., Chen, L., Yuan, F., Zhu, Y.T.: Extraordinary strain hardening by gradient structure. P. Natl. Acad. Sci. USA 111, 7197–7201 (2014)

    CAS  Google Scholar 

  21. Wang, Y., Yang, M., Ma, X., Wang, M., Yin, K., Huang, A., Huang, C.: Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Mater. Sci. Eng. A 727, 113–118 (2018)

    CAS  Google Scholar 

  22. Wu, X., Yang, M., Yuan, F., Wu, G., Wei, Y., Huang, X., Zhu, Y.: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. P. Natl. Acad. Sci. USA 112, 14501–14505 (2015)

    CAS  Google Scholar 

  23. Li, J., Cao, Y., Gao, B., Li, Y., Zhu, Y.: Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J. Mater. Sci. 53, 10442–10456 (2018)

    CAS  Google Scholar 

  24. Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016)

    CAS  Google Scholar 

  25. Du, X.H., Li, W.P., Chang, H.T., Yang, T., Duan, G.S., Wu, B.L., Huang, J.C., Chen, F.R., Liu, C.T., Chuang, W.S., Lu, Y., Sui, M.L., Huang, E.W.: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nat. Commun. 11, 2390 (2020)

    CAS  Google Scholar 

  26. Chang, R., Fang, W., Yu, H., Bai, X., Zhang, X., Liu, B., Yin, F.: Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity. Scripta Mater. 172, 144–148 (2019)

    CAS  Google Scholar 

  27. Wu, S.W., Wang, G., Wang, Q., Jia, Y.D., Yi, J., Zhai, Q.J., Liu, J.B., Sun, B.A., Chu, H.J., Shen, J., Liaw, P.K., Liu, C.T., Zhang, T.Y.: Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Mater. 165, 444–458 (2019)

    CAS  Google Scholar 

  28. Jo, Y.H., Jung, S., Choi, W.M., Sohn, S.S., Kim, H.S., Lee, B.J., Kim, N.J., Lee, S.: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 8, 15719 (2017)

    CAS  Google Scholar 

  29. Du, Y., Zhou, Q., Jia, Q., Shi, Y., Wang, H., Wang, J.: Imparities of shear avalanches dynamic evolution in a metallic glass. Mater. Res. Lett. 8, 357–363 (2020)

    CAS  Google Scholar 

  30. Wang, J.C., Liu, Y.J., Liang, S.X., Zhang, Y.S., Wang, L.Q., Sercombe, T.B., Zhang, L.C.: Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder. J. Mater. Sci. Technol. 105, 1–16 (2022)

    Google Scholar 

  31. Kishore, K., Kumar, R.G., Chandan, A.K.: Critical assessment of the strain-rate dependent work hardening behaviour of AISI 304 stainless steel. Mater. Sci. Eng. A 803, 140675 (2021)

    CAS  Google Scholar 

  32. Yasnikov, I.S., Vinogradov, A., Estrin, Y.: Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals. Scripta Mater. 76, 37–40 (2014)

    CAS  Google Scholar 

  33. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014)

    CAS  Google Scholar 

  34. Miao, J., Slone, C.E., Smith, T.M., Niu, C., Bei, H., Ghazisaeidi, M., Pharr, G.M., Mills, M.J.: The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater. 132, 35–48 (2017)

    CAS  Google Scholar 

  35. Ding, Q., Fu, X., Chen, D., Bei, H., Gludovatz, B., Li, J., Zhang, Z., George, E.P., Yu, Q., Zhu, T., Ritchie, R.O.: Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater. Today 25, 21–27 (2019)

    CAS  Google Scholar 

  36. Otto, F., Hanold, N.L., George, E.P.: Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39–48 (2014)

    CAS  Google Scholar 

  37. Bhattacharjee, P.P., Sathiaraj, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C.-W., Yeh, J.-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys. Compd. 587, 544–552 (2014)

    CAS  Google Scholar 

  38. Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., Lu, Z.P.: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Mater. 68, 526–529 (2013)

    CAS  Google Scholar 

  39. Liu, Y.J., Wang, H.L., Li, S.J., Wang, S.G., Wang, W.J., Hou, W.T., Hao, Y.L., Yang, R., Zhang, L.C.: Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 126, 58–66 (2017)

    CAS  Google Scholar 

  40. Zhu, Y., Ameyama, K., Anderson, P.M., Beyerlein, I.J., Gao, H., Kim, H.S., Lavernia, E., Mathaudhu, S., Mughrabi, H., Ritchie, R.O., Tsuji, N., Zhang, X., Wu, X.: Heterostructured materials: superior properties from hetero-zone interaction. Mater. Res. Lett. 9, 1–31 (2020)

    Google Scholar 

  41. Wu, Z., Bei, H., Pharr, G.M., George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014)

    CAS  Google Scholar 

  42. Yang, M., Pan, Y., Yuan, F., Zhu, Y., Wu, X.: Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 4, 145–151 (2016)

    CAS  Google Scholar 

  43. Sathiyamoorthi, P., Kim, H.S.: High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 123, 100709 (2020)

    Google Scholar 

  44. Zhu, Y., Wu, X.: Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 7, 393–398 (2019)

    Google Scholar 

  45. Hua, D., **a, Q., Wang, W., Zhou, Q., Li, S., Qian, D., Shi, J., Wang, H.: Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plasticity 142, 102997 (2021)

    CAS  Google Scholar 

  46. Bowden, F.P., Tabor, D.: Friction, lubrication and wear: A survey of work during the last decade. Br. J. Appl. Phys. 17, 1521–1544 (2002)

    Google Scholar 

  47. Ye, Y.X., Liu, C.Z., Wang, H., Nieh, T.G.: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78–89 (2018)

    CAS  Google Scholar 

  48. Lafaye, S., Gauthier, C., Schirrer, R.: The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribo. Lett. 21, 95–99 (2006)

    Google Scholar 

  49. Jia, Q., He, W., Hua, D., Zhou, Q., Du, Y., Ren, Y., Lu, Z., Wang, H., Zhou, F., Wang, J.: Effects of structure relaxation and surface oxidation on nanoscopic wear behaviors of metallic glass. Acta Mater. 232, 117934 (2022)

    CAS  Google Scholar 

  50. Zhou, Q., Han, W., Luo, D., Du, Y., **e, J., Wang, X.-Z., Zou, Q., Zhao, X., Wang, H., Beake, B.D.: Mechanical and tribological properties of Zr–Cu–Ni–Al bulk metallic glasses with dual-phase structure. Wear 474–475, 203880 (2021)

    Google Scholar 

  51. Zhou, Q., Luo, D., Hua, D., Ye, W., Li, S., Zou, Q., Chen, Z., Wang, H.: Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction (2022). https://doi.org/10.1007/s40544-021-0581-6

    Article  Google Scholar 

  52. Liu, C., Li, Z., Lu, W., Bao, Y., **a, W., Wu, X., Zhao, H., Gault, B., Liu, C., Herbig, M., Fischer, A., Dehm, G., Wu, G., Raabe, D.: Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat. Commun. 12, 5518 (2021)

    CAS  Google Scholar 

  53. Zhou, Q., Ren, Y., Du, Y., Han, W., Hua, D., Zhai, H., Huang, P., Wang, F., Wang, H.: Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. J. Alloys. Compd. 780, 671–679 (2019)

    CAS  Google Scholar 

  54. Luo, D., Zhou, Q., Ye, W., Ren, Y., Greiner, C., He, Y., Wang, H.: Design and characterization of self-lubricating refractory high entropy alloy-based multilayered films. ACS Appl. Mater. Interfaces. 13, 55712–55725 (2021)

    CAS  Google Scholar 

  55. Greiner, C., Gagel, J., Gumbsch, P.: Solids under extreme shear: Friction-mediated subsurface structural transformations. Adv Mater. 31, 1806705 (2019)

    Google Scholar 

  56. Heczko, M., Mazánová, V., Slone, C.E., Shih, M., George, E.P., Ghazisaeidi, M., Polák, J., Mills, M.J.: Role of deformation twinning in fatigue of CrCoNi medium-entropy alloy at room temperature. Scripta Mater. 202, 113985 (2021)

    CAS  Google Scholar 

  57. Lin, K., Chen, S.-C., Lin, H.-C., Yen, H.-W.: Enhancement in mechanical properties through an FCC-to-HCP phase transformation in an Fe-17.5Mn-10Co-12.5Cr-5Ni-5Si (in at%) medium-entropy alloy. J. Alloys. Compd. 898, 162765 (2022)

    CAS  Google Scholar 

  58. Cheng, W., Liu, W., Fan, X., Yuan, S.: Cooperative enhancements in ductility and strain hardening of a solution-treated Al–Cu–Mn alloy at cryogenic temperatures. Mater. Sci. Eng. A 790, 139707 (2020)

    CAS  Google Scholar 

  59. Wang, J., Zhao, Y., Zhou, W., Zhao, Q., Lei, C., Zeng, W.: In-situ study on tensile deformation and damage evolution of metastable β titanium alloy with lamellar microstructure. Mater. Sci. Eng. A 824, 141790 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science Foundation of China (No. 52175188, 52104386), Shanghai Sailing Program, State Key Laboratory for Mechanical Behavior of Materials (No. 20222412) and the Fundamental Research Funds for the Central Universities (No. 3102019JC001).

Funding

The Natural Science Foundation of China, 52175188, Qing Zhou, 52104386, Yixuan He, Shanghai Sailing Program and the Fundamental Research Funds for the Central Universities, 3102019JC001, Haifeng Wang, State Key Laboratory for Mechanical Behavior of Materials, 20222412, Qing Zhou

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Haifeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Ren, Y., Luo, D. et al. Improved Wear Resistance of a Heterogeneous CoCrNi Medium-Entropy Alloy at Cryogenic Temperature. Tribol Lett 70, 96 (2022). https://doi.org/10.1007/s11249-022-01643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01643-x

Keywords

Navigation