Log in

Directional Multiscale Analysis and Optimization for Surface Textures

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Surface texturing has a potential to become a cost effective and easy way to improve the tribological performance of lubricated interfacing surfaces. Effects of surface textures on the performance of machine elements as frictional pairs have been investigated over the past two decades. However, despite this research only a limited number of analytical solutions have been proposed as the majority of studies have been experimental and results obtained have not been optimal. This is because the commonly used surface characterization methods are not able to quantify surface textures over a range of scales at different directions and the optimization methods used work only for relatively simple textures and specific constraints imposed on pressure, film thickness, sliding velocity and lubricant rheology. Previous studies have addressed these issues, to some degree, by develo** directional fractal signature methods and unified computational approach for texture optimization. In this article, recent advancements in the development of fractal methods and optimization of surface textures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Estion, I.: State of the art in laser surface texturing. ASME J. Tribol. 127, 248–253 (2005)

    Article  Google Scholar 

  2. Mathia, T.G., Pawlus, P., Wieczorowski, M.: Recent trends in surface metrology. Wear 271, 494–508 (2011)

    Article  CAS  Google Scholar 

  3. Costa, H.L., Hutchings, I.M.: Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 40, 1227–1238 (2007)

    Article  CAS  Google Scholar 

  4. Wang, X., Yin, J., Wang, X.: Photoinduced self-structured surface pattern on a molecular azo glass film: structure and property relationship and wavelength correlation. Langmuir 27, 12666–12676 (2011)

    Article  CAS  Google Scholar 

  5. Miyake, K., Nakano, M., Korenaga, A., Hori, Y., Ikeda, T., Asakawa, M., Shimizu, T., Sasaki, S., Ando, Y.: Nanoscale to macroscale investigation of the frictional properties of physisorbed layers of self-organized phthalocyanine derivatives. Tribol. Lett. 31, 9–15 (2008)

    Article  CAS  Google Scholar 

  6. Stout, K.J., Blunt, L.: A contribution to the debate on surface classifications—random, systematic, unstructured, structured and engineered. Int. J. Mach. Tool Manuf. 41, 2039–2044 (2001)

    Article  Google Scholar 

  7. Russ, J.: Fractal Surfaces. Plenum Press, New York (1994)

    Google Scholar 

  8. Whitehouse, D.: Handbook of Surface and Nanometrology, 2nd edn. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  9. Jiang, L., Zhao, Y., Zhai, J.: A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed. 43, 4338–4341 (2004)

    Article  CAS  Google Scholar 

  10. Lu, X.Y., Zhang, C.C., Han, Y.C.: Low-density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromol. Rapid Commun. 25, 1606–1610 (2004)

    Article  CAS  Google Scholar 

  11. Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C.: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21, 5549–5554 (2005)

    Article  CAS  Google Scholar 

  12. Tsukruk, V.V., Ahn, H.-S., Kim, D., Sidorenko, A.: Triplex molecular layers with nonlinear nanomechanical response. Appl. Phys. Lett. 80, 4825–4828 (2002)

    Article  CAS  Google Scholar 

  13. Hashimoto, H.: Optimum design of high-speed, short journal bearings by mathematical programming. Tribol. Trans. 40, 283–293 (1997)

    Article  CAS  Google Scholar 

  14. Ostayen, R.A.J.: Film height optimization of dynamically loaded hydrodynamic slider bearings. Tribol. Int. 43, 1786–1793 (2010)

    Article  Google Scholar 

  15. Boedo, S., Eshkabilov, S.L.: Optimal shape design of steadily loaded journal bearings using genetic algorithms. Tribol. Trans. 46, 134–143 (2003)

    Article  CAS  Google Scholar 

  16. Papadopoulos, C.I., Efstahiou, E.E., Nikolakopoulos, P.G., Kaiktsis, L.: Geometry optimization of textured three-dimensional micro-thrust bearings. ASME J. Tribol. 133, 1–14 (2011)

    Article  Google Scholar 

  17. Pentland, A.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984)

    Article  CAS  Google Scholar 

  18. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Applications of the variance orientation transform method to the multiscale characterization of surface roughness and anisotropy. Tribol. Int. 43, 2203–2215 (2010)

    Article  Google Scholar 

  19. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs. Proc. Inst. Mech. Eng. H 223, 211–236 (2009)

    CAS  Google Scholar 

  20. Wolski, M., Podsiadlo, P., Stachowiak, G.W., Lohmander, L.S., Englund, M.: Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthritis Cartilage 18, 684–690 (2010)

    Article  CAS  Google Scholar 

  21. Stachowiak, G.P., Stachowiak, G.W., Podsiadlo, P.: Automated classification of wear particles based on their surface texture and shape features. Tribol. Int. 41, 34–43 (2008)

    Article  CAS  Google Scholar 

  22. Lynch, J.A., Hawkes, D.J., Buckland-Wright, J.C.: A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. Med. Inf. (Lond) 16, 241–251 (1991)

    Article  CAS  Google Scholar 

  23. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Directional fractal signature analysis of self-structured surface textures. Tribol. Lett. 47, 323–340 (2012)

    Article  Google Scholar 

  24. Hendriks, C.L., van Vliet, L.J.: Using line segments as structuring elements for sampling-invariant measurements. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1826–1831 (2005)

    Article  Google Scholar 

  25. Podsiadlo, P., Stachowiak, G.W.: Scale-invariant analysis of wear particle surface morphology I: theoretical background, computer implementation and technique testing. Wear 242, 160–179 (2000)

    Article  CAS  Google Scholar 

  26. Stachowiak, G.W., Podsiadlo, P.: 3-D characterization, optimization, and classification of textured surfaces. Tribol. Lett. 32, 13–21 (2008)

    Article  Google Scholar 

  27. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Effects of information loss in texture details due to the PIFS encoding on load and friction in hydrodynamic bearings. Tribol. Int. 44, 2002–2012 (2011)

    Article  Google Scholar 

  28. Moes, H., Bosma, R.: Design charts for optimum bearing configurations—1: the full journal bearing. ASME J. Lubr. Technol. 93, 302–306 (1971)

    Article  Google Scholar 

  29. Tala-Ighil, N., Maspeyrot, P., Fillon, M., Bounif, A.: Effects of surface texture on journal-bearing characteristics under steady-state operating conditions. Proc. IMechE J. 221, 623–633 (2007)

    Article  Google Scholar 

  30. Caciu, C.A., Decenciere, E.: Numerical analysis of a 3D hydrodynamic contact. Int. J. Numer. Methods Fluids 51, 1355–1377 (2006)

    Article  Google Scholar 

  31. Ma, C., Zhu, H.: An optimum design model for textured surface with elliptical-shape dimples under hydrodynamic lubrication. Tribol. Int. 44, 987–995 (2011)

    Article  Google Scholar 

  32. Rohde, S.M., McAllister, G.T.: On the optimization of fluid film bearings. Proc. R. Soc. Lond. A 351, 481–497 (1976)

    Article  Google Scholar 

  33. Buscaglia, G.C., Ciuperca, I., Jai, M.: On the optimization of surface textures for lubricated contacts. J. Math. Anal. Appl. 335, 1309–1327 (2007)

    Article  Google Scholar 

  34. Hashimoto, H., Namba, T.: Optimization of groove geometry for a thrust air bearing according to various objective functions. J. Tribol. 131, 041704-1–041704-10 (2009)

    Google Scholar 

  35. Alyaqout, S.F., Elsharkawy, A.A.: Optimal film shape for two-dimensional slider bearings lubricated with couple stress fluids. Tribol. Int. 44, 336–342 (2011)

    Article  CAS  Google Scholar 

  36. Biros, G., Ghattas, O.: SIAG/OPT views-and news. Forum SIAM Activ. Group Optim. 11, 1–6 (2000)

    Google Scholar 

  37. Guzek, A., Podsiadlo, P., Stachowiak, G.W.: A unified computational approach to the optimization of surface textures: one dimensional hydrodynamic bearings. Tribol. Online 5, 150–160 (2010)

    Article  Google Scholar 

  38. Babuska, I., Suri, M.: The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)

    Article  Google Scholar 

  39. Biros, G., Ghattas, O.: A Lagrange–Newton–Krylov–Schur method for PDE-constrained optimization. SIAG/OPT Views News 11, 1–6 (2000)

    Google Scholar 

  40. Cupillard, S., Glavatskih, S., Cervantes, M.J.: Computational fluid dynamics analysis of a journal bearing with surface texturing. Proc. Inst. Mech. Eng. J 222, 97–107 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Western Australia and the School of Mechanical and Chemical Engineering for support during preparation of the manuscript. A part of the work presented was included in ‘An integrated surface technology design, modeling, and representation’—A topical report, International Energy Agency Cooperative Programme on Advanced Materials for Transportation Applications Annex IV on Integrated Surface Technology, IEA, June 2012.

Conflict of interest

The authors have no conflict of interest for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Podsiadlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podsiadlo, P., Stachowiak, G.W. Directional Multiscale Analysis and Optimization for Surface Textures. Tribol Lett 49, 179–191 (2013). https://doi.org/10.1007/s11249-012-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0054-1

Keywords

Navigation