Log in

A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Common industrial lubricants include natural and synthetic hydrocarbons and perfluoropolyethers (PFPEs), where the latter is widely used in commercial applications requiring extreme operating conditions due to their high temperature stability and extremely low vapor pressure. However, PFPEs exhibit low electrical conductivity, making them undesirable in some nanotechnology applications. Ionic liquids (ILs) have been explored as lubricants for various device applications due to their excellent electrical conductivity as well as good thermal conductivity, where the latter allows frictional heating dissipation. Since they do not emit volatile organic compounds, they are regarded as “green” lubricants. In this article, we review the different types of ILs and their physical properties responsible for lubrication. We also discuss their suitability as lubricants, since the long-term performance of ILs as lubricants may be affected by issues such as corrosion, oxidation, tribochemical reactions, and toxicity. We present nanotribological, electrical, and spectroscopic studies of IL films along with conventional tribological investigations, recognizing that understanding the tribological performance at various length scales is a crucial step in selecting and designing effective lubricants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bhushan, B.: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. Springer, New York (1996)

    Google Scholar 

  2. Bhushan, B.: Tribology Issues and Opportunities in MEMS. Kluwer Academic, Dordrecht, The Netherlands (1998)

    Google Scholar 

  3. Bhushan, B.: Handbook of Micro/Nanotribology, 2nd edn. CRC, Boca Raton, FL (1999)

    Google Scholar 

  4. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

    Google Scholar 

  5. Bhushan, B.: Nanotribology and Nanomechanics—An Introduction, 2nd edn. Springer-Verlag, Heidelberg, Germany (2008)

    Google Scholar 

  6. Bhushan, B.: Springer Handbook of Nanotechology, 3rd edn. Springer-Verlag, Heidelberg, Germany (2010)

    Google Scholar 

  7. Bhushan, B., Lee, H., Chaparala, S.C., Bhatia, V.: Nanolubrication of sliding components in adaptive optics used in microprojectors. Appl. Surf. Sci. 256, 7545–7558 (2010)

    Article  CAS  ADS  Google Scholar 

  8. Henck, S.A.: Lubrication of digital micromirror devices. Tribol. Lett. 3, 239–247 (1997)

    Article  CAS  Google Scholar 

  9. Douglass, M.R.: Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In: Proceedings of the 36th Annual International Reliability Physics Symposium, pp. 9–16. IEEE Press, New Jersey (1998)

  10. Sulouff, R.E.: MEMS opportunities in accelerometers and gyros and the microtribology problems limiting commercialization. In: Bhushan, B. (ed.) Tribology Issues and Opportunities in MEMS, pp. 109–119. Kluwer Academic, Dordrecht, The Netherlands (1998)

    Google Scholar 

  11. Vettiger, P., Brugger, J., Despont, M., Dreschler, U., Durig, U., Haberle, W., Lutwyche, M., Rothuizen, H., Stuz, R., Widmer, R., Binnig, G.: Ultrahigh density, high data rate NEMS-based AFM data storage system. Microelectron. Eng. 46, 11–17 (1999)

    Article  CAS  Google Scholar 

  12. Bhushan, B., Kwak, K.J., Palacio, M.: Nanotribology and nanomechanics of AFM probe-based data recording technology. J. Phys. Condens. Matter 20, 365207-1-34 (2008)

    Google Scholar 

  13. Liu, H., Bhushan, B.: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97, 321–340 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Tao, Z., Bhushan, B.: Bonding, degradation and environmental effects on novel perfluoroether lubricants. Wear 259, 1352–1361 (2005)

    Article  CAS  Google Scholar 

  15. Bhushan, B., Tao, Z.: Lubrication of advanced metal evaporated tapes using novel perfluoroether lubricants. Microsyst. Technol. 12, 579–587 (2006)

    Article  CAS  Google Scholar 

  16. Rooney, D.W., Seddon, K.R.: Ionic liquids. In: Wypych, G. (ed.) Handbook of Solvents. ChemTec Publishing, Toronto (2001)

    Google Scholar 

  17. Kinzig, B.J., Sutor, P., Sawyer, W.G., Rennie, A., Dickrell, P., Gresham, J.: Novel ionic liquid lubricants for aerospace and MEMS. In: ASME World Tribology Congress Proceedings, WTC2005-63744, pp. 509–510. ASME Press, New York (2005)

  18. Keskin, S., Kayrak-Talay, D., Akman, U., Hortacsu, O.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150–180 (2007)

    Article  CAS  Google Scholar 

  19. Zhao, H.: Innovative applications of ionic liquids as “green” engineering liquids. Chem. Eng. Commun. 193, 1660–1677 (2006)

    Article  CAS  Google Scholar 

  20. Hough, W.L., Rogers, R.D.: Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 80, 2262–2269 (2007)

    Article  CAS  Google Scholar 

  21. Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22, 1196–1221 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 2001, 2244–2245 (2001)

    Article  Google Scholar 

  23. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)

    Article  CAS  Google Scholar 

  24. Liu, W., Ye, C., Chen, Y., Ou, Z., Sun, D.C.: Tribological behavior of sialon ceramics sliding against steel lubricated by fluorine-containing oils. Tribol. Int. 35, 503–509 (2002)

    Article  CAS  Google Scholar 

  25. Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004)

    Article  CAS  Google Scholar 

  26. Nainaparampil, J.J., Phillips, B.S., Eapen, K.C., Zabinski, J.S.: Micro-nano behavior of DMBI-PF6 ionic liquid nanocrystals: large and small-scale interfaces. Nanotechnology 16, 2474–2481 (2005)

    Article  CAS  ADS  Google Scholar 

  27. Bhushan, B., Palacio, M., Kinzig, B.: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317, 275–287 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Palacio, M., Bhushan, B.: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20, 1194–1198 (2008)

    Article  CAS  Google Scholar 

  29. Palacio, M., Bhushan, B.: Molecularly thick dicationic liquid films for nanolubrication. J. Vac. Sci. Technol. A 27, 986–995 (2009)

    Article  CAS  Google Scholar 

  30. Bermudez, M.D., Jimenez, A.E., Sanes, J., Carrion, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Ionic liquids as thermal fluids. Electrochem. Soc. Proc. 2002-19, 112–123 (2002)

    Google Scholar 

  34. Kinzig, B.J., Sutor, P.: Ionic liquids: novel lubrication for air and space. Phase I Final Report for AFOSR/NL. Surfaces Research and Applications, Inc., Lenexa, KS (2005)

  35. Chambers, R.G.: Electrons in Metals and Semiconductors. Chapman and Hall, London (1990)

    Google Scholar 

  36. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006)

    Article  CAS  Google Scholar 

  37. Merck Ionic Liquids Database, Darmstadt, Germany. http://ildb.merck.de/ionicliquids/en/startpage.htm

  38. Z-TETRAOL Data Sheet. Solvay Solexis Inc., Thorofare, NJ

  39. Reich, R.A., Stewart, P.A., Bohaychick, J., Urbanski, J.A.: Base oil properties of ionic liquids. Lubr. Eng. 49, 16–21 (2003)

    Google Scholar 

  40. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contacts. Wear 256, 44–48 (2004)

    Article  CAS  Google Scholar 

  41. Kabo, G.J., Blokhin, A.V., Paulechka, Y.U., Kabo, A.J., Shymanovich, M.P., Magee, J.W.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J. Chem. Eng. Data 49, 453–461 (2004)

    Article  CAS  Google Scholar 

  42. Frez, C., Diebold, G.J., Tran, C.D., Yu, S.: Determination of thermal diffusivities, thermal conductivities and sound speed of room-temperature ionic liquids by the transient grating technique. J. Chem. Eng. Data 51, 1250–1255 (2006)

    Article  CAS  Google Scholar 

  43. Carda-Broch, S., Berthod, A., Armstrong, D.W.: Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal. Bioanal. Chem. 375, 191–199 (2003)

    CAS  PubMed  Google Scholar 

  44. Ye, C., Liu, W., Chen, Y., Ou, Z.: Tribological behavior of Dy-sialon ceramics sliding against Si3N4 under lubrication of fluorine-containing oils. Wear 253, 579–584 (2002)

    Article  CAS  Google Scholar 

  45. Forsyth, M., Neil, W.C., Howlett, P.C., Macfarlane, D.R., Hinton, B.R.W., Rocher, N., Kemp, T.F., Smith, M.E.: New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces. ACS Appl. Mater. Interfaces 1, 1045–1052 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Sanes, J., Carrion, F.J., Bermudez, M.D., Martinez-Nicolas, G.: Ionic liquids as lubricants of polystyrene and polyamide-6 contacts. Preparation and properties of new polymer-ionic liquid dispersions. Tribol. Lett. 21, 121–133 (2006)

    Article  CAS  Google Scholar 

  47. Carrion, F.J., Sanes, J., Bermudez, M.D.: Effect of ionic liquid on the structure and tribological properties of polycarbonate-zinc oxide nanodispersion. Mater. Lett. 61, 4531–4535 (2007)

    Article  CAS  Google Scholar 

  48. Omotowa, B.A., Phillips, B.S., Zabinski, J.S., Shreeve, J.M.: Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 43, 5466–5471 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. Bermudez, M.D., Jimenez, A.E.: Surface interactions and tribochemical processes in ionic liquid lubrication of aluminum-steel contacts. Int. J. Surf. Sci. Eng. 1, 100–110 (2007)

    Article  CAS  Google Scholar 

  50. Zhao, Z., Shao, Y., Wang, T., Feng, D., Liu, W.: Corrosion resistance of steel in ethanol containing ionic liquid salts. Corrosion 65, 674–680 (2009)

    Article  CAS  Google Scholar 

  51. Caporali, S., Ghezzi, F., Giorgetti, A., Lavacchi, A., Tolstogouzov, A., Bardi, U.: Interaction between an imidazolium based ionic liquid and the AZ91D magnesium alloy. Adv. Eng. Mater. 9, 185–190 (2007)

    Article  CAS  Google Scholar 

  52. Liu, X., Zhou, F., Liang, Y., Liu, W.: Benzotriazole as additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids. Tribol. Lett. 23, 191–196 (2006)

    Article  CAS  Google Scholar 

  53. Yu, B., Zhou, F., Pang, C., Wang, B., Liang, Y., Liu, W.: Tribological evaluation of α,ώ-diimidazoliumalkylene hexafluorophosphate ionic liquid and benzotriazole as additive. Tribol. Int. 41, 797–801 (2008)

    Article  CAS  Google Scholar 

  54. Minami, I., Kamimura, H., Mori, S.: Thermo-oxidative stability of ionic liquids as lubricating fluids. J. Synth. Lubr. 24, 135–147 (2007)

    Article  CAS  Google Scholar 

  55. Lu, Q., Wang, H., Ye, C., Liu, W., Xue, Q.: Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel-steel contact. Tribol. Int. 37, 547–552 (2004)

    Article  CAS  Google Scholar 

  56. Kamimura, H., Kubo, T., Minami, I., Mori, S.: Effect and mechanism of additives for ionic liquids as new lubricants. Tribol. Int. 40, 620–625 (2007)

    Article  CAS  Google Scholar 

  57. Phillips, B.S., John, G., Zabinski, J.S.: Surface chemistry of fluorine containing ionic liquids on steel substrates at elevated temperatures using Mössbauer spectroscopy. Tribol. Lett. 26, 85–91 (2007)

    Article  CAS  Google Scholar 

  58. Swatlowski, R.P., Holbrey, J.H., Rogers, R.D.: Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5, 361–363 (2003)

    Article  Google Scholar 

  59. Wasserscheid, P., van Hal, R., Bössman, A.: 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even “greener” ionic liquid. Green Chem. 4, 400–404 (2002)

    Article  CAS  Google Scholar 

  60. Bernot, R.J., Brueseke, M.A., Evans-White, M.A., Lamberti, G.A.: Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ. Toxicol. Chem. 24, 87–92 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. Harrison, B., Czerw, R., Konchady, M.S., Pai, D.M., Lopatka, M.W., Jones, P.B.: Ionic liquids incorporating nanomaterials as lubricants for harsh environments. In: Proceedings of the ASME Materials Division, pp. 405–410. ASME Press, New York (2005)

  62. Yu, B., Liu, Z., Zhou, F., Liu, W., Liang, Y.: A novel lubricant additive based on carbon nanotubes for ionic liquids. Mater. Lett. 62, 2967–2969 (2008)

    Article  CAS  Google Scholar 

  63. Kondo, H.: Protic ionic liquids with ammonium salts as lubricants for magnetic thin film media. Tribol. Lett. 31, 211–218 (2008)

    Article  CAS  MathSciNet  Google Scholar 

  64. Zhu, M., Yan, J., Mo, Y., Bai, M.: Effect of the anion on the tribological properties of ionic liquid nano-films on surface-modified silicon wafers. Tribol. Lett. 29, 177–183 (2008)

    Article  Google Scholar 

  65. **e, G., Wang, Q., Si, L., Liu, S., Li, G.: Tribological characterization of several silicon-based materials under ionic-liquid lubrication. Tribol. Lett. 36, 247–257 (2009)

    Article  CAS  Google Scholar 

  66. Nooruddin, N.S., Wahlbeck, P.G., Carper, W.R.: Semi-empirical molecular modeling of ionic liquid tribology: ionic liquid-hydroxylated silicon surface interactions. Tribol. Lett. 36, 147–156 (2009)

    Article  CAS  Google Scholar 

  67. Perkin, S., Albrecht, T., Klein, J.: Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Phys. Chem. Chem. Phys. 12, 1243–1247 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. Ueno, K., Kasuya, M., Watanabe, M., Mizukami, M., Kurihara, K.: Resonance shear measurement of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 12, 4066–4071 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. **e, G., Luo, J., Guo, D., Liu, S.: Nanoconfined ionic liquids under electric fields. Appl. Phys. Lett. 96, 043112 (2010)

    Article  ADS  Google Scholar 

  70. Manini, N., Cesaratto, M., Del Popolo, M.G., Ballone, P.: Mesophases in nearly 2-D room-temperature ionic liquids. J. Phys. Chem. B 113, 15602–15609 (2009)

    Article  CAS  PubMed  Google Scholar 

  71. Mazyar, O.A., Jennings, G.K., McCabe, C.: Frictional dynamics of alkylsilane monolayers on SiO2: effect of 1-n-butyl-3-methylimidazolium nitrate as a lubricant. Langmuir 25, 5103–5110 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. Anderson, J.L., Ding, R., Ellern, A., Armstrong, D.W.: Structure and properties of high stability germinal dicationic ionic liquids. J. Am. Chem. Soc. 127, 593–604 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. Payagala, T., Huang, J., Breitbach, Z.S., Sharma, P.S., Armstrong, D.W.: Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem. Mater. 19, 5848–5850 (2007)

    Article  CAS  Google Scholar 

  74. Mo, Y., Yu, B., Zhao, W., Bai, M.: Microtribological properties of molecularly thin carboxylic acid functionalized imidazolium ionic liquid film on single-crystal silicon. Appl. Surf. Sci. 255, 2276–2283 (2008)

    Article  CAS  ADS  Google Scholar 

  75. Mo, Y., Zhao, W., Zhu, M., Bai, M.: Nano/microtribological properties of ultrathin functionalized imidazolium wear-resistant ionic liquid films on single crystal silicon. Tribol. Lett. 32, 143–151 (2008)

    Article  CAS  Google Scholar 

  76. Zhao, W., Mo, Y., Pu, J., Bai, M.: Effect of cation on micro/nano-tribological properties of ultra-thin ionic liquid films. Tribol. Int. 42, 828–835 (2009)

    Article  CAS  Google Scholar 

  77. Zhao, W., Zhu, M., Mo, Y., Bai, M.: Effect of anion on micro/nanotribological properties of ultra-thin imidazolium ionic liquid films on silicon wafer. Colloid Surf. A 332, 78–83 (2009)

    Article  CAS  Google Scholar 

  78. Zhu, M., Mo, Y., Zhao, W., Bai, M.: Micro/macrotribological properties of several nano-scale ionic liquid films on modified silicon wafers. Surf. Interface Anal. 41, 205–210 (2009)

    Article  CAS  Google Scholar 

  79. Palacio, M., Bhushan, B.: Surface potential and resistance measurements for detecting wear of chemically-bonded and unbonded molecularly-thick perfluoroether lubricant films using atomic force microscopy. J. Colloid Interface Sci. 315, 261–269 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. Bhushan, B., Goldade, A.V.: Kelvin probe microscopy measurements of surface potential change under wear at low loads. Wear 244, 104–117 (2000)

    Article  CAS  Google Scholar 

  81. Lodge, R.A., Bhushan, B.: Effect of physical wear and triboelectric interaction on surface charge as measured by Kelvin probe microscopy. J. Colloid Interface Sci. 310, 321–330 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. Valkenberg, M.H., de Castro, C., Holderich, W.F.: Immobilization of ionic liquids on solid supports. Green Chem. 4, 88–93 (2002)

    Article  CAS  Google Scholar 

  83. Zhang, L., Zhang, Q., Li, J.: Electrochemical behaviors and spectral studies of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) based on sol-gel electrode. J. Electroanal. Chem. 603, 243–248 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacio, M., Bhushan, B. A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology. Tribol Lett 40, 247–268 (2010). https://doi.org/10.1007/s11249-010-9671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9671-8

Keywords

Navigation