Log in

Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abicht JM, Sfriso R, Reichart B, Langin M, Gahle K, Puga Yung GL, Seebach JD, Rieben R, Ayares D, Wolf E, Klymiuk N, Baehr A, Kind A, Mayr T, Bauer A (2018) Multiple genetically modified GTKO/hCD46/HLA-E/hbeta2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation 25(5):e12390

    Article  Google Scholar 

  • Ayares D, Phelps C, Vaught T, Ball S, Monahan J, Walters A, Giraldo A, Bertera S, Windt DVD, Wijkstrom M (2013) Multi-transgenic pigs for xenoislet transplantation. Xenotransplantation 20(1):46

    Article  Google Scholar 

  • Bottino R, Wijkstrom M, van Der Windt DJ, hara H, Ezzelarab M, Murase N, Bertera S, He J, Phelps C, Ayares D, Cooper DK, Trucco M (2014) Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 14(10):2275–2287

    Article  CAS  Google Scholar 

  • Bressan FF, Miranda MS, Perecin F, Bem THCD, Bajgelman M, Strauss B, Krieger JE, Binelli M, Meirelles FV (2009) Recloning using transgenic fetal fibroblasts as nuclei donors increases development potential of reconstructed embryos in cattle. Reprod Fertil Dev 22(1):180–181

    Article  Google Scholar 

  • Cao Z, Li Y, Wen X, Li Z, Mi C, Zhang Z, Li N, Li Q (2014) Recloned transgenic pigs possess normal reproductive performance and stable genetic transmission capacity. Zygote (Camb Engl) 22(1):18–24

    Article  CAS  Google Scholar 

  • Chen Y, Stewart JM, Gunthart M, Hawthorne WJ, Salvaris EJ, O’Connell PJ, Nottle MB, d’Apice AJ, Cowan PJ, Kearns-Jonker M (2014) Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors. Xenotransplantation 21(3):244–253

    Article  Google Scholar 

  • Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D (2019) Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 26:e12516

    PubMed  Google Scholar 

  • Cowan PJ, Aminian A, Barlow H, Brown AA, Chen CG, Fisicaro N, Francis DM, Goodman DJ, Han W, Kurek M, Nottle MB, Pearse MJ, Salvaris E, Shinkel TA, Stainsby GV, Stewart AB, d’Apice AJ (2000) Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation 69(12):2504–2515

    Article  CAS  Google Scholar 

  • Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DK (2012) Clinical xenotransplantation: the next medical revolution? The Lancet 379(9816):672–683

    Article  Google Scholar 

  • Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, Flisikowski K, Christan S, Edlinger M, Baars W, Kurome M, Zakhartchenko V, Kessler B, Plotzki E, Szczerbal I, Switonski M, Denner J, Wolf E, Schwinzer R, Niemann H, Kind A, Schnieke A (2016) Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep 6:29081

    Article  CAS  Google Scholar 

  • Harris DG, Quinn KJ, French BM, Schwartz E, Kang E, Dahi S, Phelps CJ, Ayares DL, Burdorf L, Azimzadeh AM, Pierson RN 3rd (2015) Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 22(2):102–111

    Article  Google Scholar 

  • Hirata R, Chamberlain J, Dong R, Russell DW (2002) Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat Biotechnol 20(7):735

    Article  CAS  Google Scholar 

  • Holm IE, Alstrup AKO, Luo Y (2016) Genetically modified pig models for neurodegenerative disorders. J Pathol 238(2):267–287

    Article  CAS  Google Scholar 

  • Jeong Y-H, Park C-H, Jang G-H, Jeong Y-I, Hwang I-S, Jeong Y-w, Kim Y-K, Shin T, Kim N-H, Hyun S-H (2013) Production of multiple transgenic Yucatan miniature pigs expressing human complement regulatory factors, human CD55, CD59, and H-transferase genes. PLoS ONE 8(5):e63241

    Article  CAS  Google Scholar 

  • Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77(3):209–221

    CAS  PubMed  Google Scholar 

  • Kong Q, Wu M, Huan Y, Zhang L, Liu H, Bou G, Luo Y, Mu Y, Liu Z (2009) Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS ONE 4(8):e6679

    Article  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4(9):340–347

    Article  CAS  Google Scholar 

  • Langin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjoberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schonmann U, Kaup FJ, Hagl C, Wolf E, Klymiuk N, Brenner P, Abicht JM (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564(7736):430–433

    Article  Google Scholar 

  • Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ (2015) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22(1):20–31

    Article  Google Scholar 

  • Liu D, Kobayashi T, Onishi A, Furusawa T, Iwamoto M, Suzuki S, Miwa Y, Nagasaka T, Maruyama S, Kadomatsu K, Uchida K, Nakao A (2007) Relation between human decay-accelerating factor (hDAF) expression in pig cells and inhibition of human serum anti-pig cytotoxicity: value of highly expressed hDAF for xenotransplantation. Xenotransplantation 14(1):67–73

    Article  CAS  Google Scholar 

  • Liu F, Liu J, Yuan Z, Qing Y, Li H, Xu K, Zhu W, Zhao H, Jia B, Pan W, Guo J, Zhang X, Cheng W, Wang W, Zhao HY, Wei HJ (2018) Generation of GTKO Diannan miniature pig expressing human complementary regulator proteins hCD55 and hCD59 via T2A peptide-based bicistronic vectors and SCNT. Mol Biotechnol 60(8):550–562

    Article  CAS  Google Scholar 

  • Mcgregor CGA, Ricci D, Miyagi N, Stalboerger PG, Du Z, Oehler EA, Tazelaar HD, Byrne GW (2012) Human CD55 expression blocks hyperacute rejection and restricts complement activation in gal knockout cardiac xenografts. Transplantation 93(7):686

    Article  CAS  Google Scholar 

  • Mohiuddin MM, Singh AK, Corcoran PC, Thomas Iii ML, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson Iii RN, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138

    Article  CAS  Google Scholar 

  • Niemann H, Petersen B (2016) The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 25(3):361–374

    Article  CAS  Google Scholar 

  • Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307

    Article  CAS  Google Scholar 

  • Wakayama S, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, Mizutani E, Nguyen VT, Kishigami S, Ishino F (2013) Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12(3):293–297

    Article  CAS  Google Scholar 

  • Watanabe H, Sahara H, Nomura S, Tanabe T, Ekanayake-Alper DK, Boyd LK, Louras NJ, Asfour A, Danton MA, Ho SH, Arn SJ, Hawley RJ, Shimizu A, Nagayasu T, Ayares D, Lorber MI, Sykes M, Sachs DH, Yamada K (2018) GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels. Xenotransplantation 25(5):e12391

    Article  Google Scholar 

  • Wei H, Qing Y, Pan W, Zhao H, Li H, Cheng W, Zhao L, Xu C, Li H, Li S (2013) Comparison of the efficiency of Banna miniature inbred pig somatic cell nuclear transfer among different donor cells. PLoS ONE 8(2):e57728

    Article  CAS  Google Scholar 

  • Westall GP, Levvey BJ, Salvaris E, Gooi J, Marasco S, Rosenfeldt F, Egan C, McEgan Ccp R, Mennen M, Russell P, Robson SC, Nottle MB, Dwyer KM, Snell GI, Cowan PJ (2013) Sustained function of genetically modified porcine lungs in an ex vivo model of pulmonary xenotransplantation. J Heart Lung Transplant 32(11):1123–1130

    Article  Google Scholar 

  • Yamauchi Y, Doe B, Ajduk A, Ward MA (2007) Genomic DNA damage in mouse transgenesis. Biol Reprod 77(5):803–812

    Article  CAS  Google Scholar 

  • Zhou CY, McInnes E, Copeman L, Langford G, Parsons N, Lancaster R, Richards A, Carrington C, Thompson S (2005) Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation 12(2):142–148

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “National Key R&D Program of China” and “Yunnan Provincial Science and Technology Department” for the support provided for this study.

Funding

This work was supported by Grants from National Key R&D Program of China (Grant No. 2019YFA0110700) and Yunling Scholars Programme of Yunnan Province and Innovative Research Team of Science and Technology in Yunnan Province.

Author information

Authors and Affiliations

Authors

Contributions

HJW and HYZ conceived and designed the experiments; HZ, YL, TW, ZY, YQ, HL, JG, BJ, XZ, WC, YS, WL, JW, DZ, KK and HJW performed the experiments; HJW, HYZ, HZ and HL analyzed the data; HJW, HYZ and KX wrote the paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hong-Ye Zhao or Hong-Jiang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal experiments were performed with approval from the Animal Care and Use Committee of Yunnan Agricultural University in China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Heng Zhao, Yuying Li and Thanapa Wiriyahdamrong are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, Y., Wiriyahdamrong, T. et al. Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning. Transgenic Res 29, 369–379 (2020). https://doi.org/10.1007/s11248-020-00201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-020-00201-2

Keywords

Navigation