Log in

Influence of Pore Structure of Silica Coated on Copper-Zinc Oxide-Based Catalyst for Carbon Dioxide into Methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The present work has investigated influence of pore structure of silica coated on copper-zinc oxide-based catalyst for hydrogenation of carbon dioxide into methanol. For controlling the pore structure, micelles of a cationic surfactant, cethyltrimethylammonium bromide (CTAB), was used without and with a swelling agent, 1-dodecylamine, during coating silica on the commercial copper–zinc oxide-based catalyst. The pore structure depended on the amount of the surfactant and the swelling agent, and the specific surface area and the ratio of mesopores of the silica-coated catalyst significantly increased with adding 1-dodecylamine with the surfactant. The silica-coated catalyst prepared both with CTAB and 1-dodecylamine showed the significantly rapid evaporation of physisorbed water on the catalysts, and the property can reflect the catalyst’s high activity and stability for hydrogenation of carbon dioxide into methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tlili A, Frogneux X, Blondiaux E, Cantat T (2014) Creating Added Value with a Waste: Methylation of Amines with CO2 and H2. Angew Chem Int Ed 53:2543–2545. https://doi.org/10.1002/anie.201310337

    Article  CAS  Google Scholar 

  2. Goeppert A, Czaun M, Jones JP, Prakash GKS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  3. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118:434–504. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Cui X, Dong K, Junge K, Beller M (2017) Utilization of CO2 as a C1 building block for catalytic methylation reactions. ACS Catal 7:1077–1086. https://doi.org/10.1021/acscatal.6b02715

    Article  CAS  Google Scholar 

  5. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498. https://doi.org/10.1021/jo801260f

    Article  CAS  PubMed  Google Scholar 

  6. Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, Hoboken, pp 83–391

    Google Scholar 

  7. Wu J, Luo S, Toyir J, Saito M, Takeuchi M, Watanabe T (1998) Optimization of preparation conditions and improvement of stability of Cu/ZnO-based multicomponent catalysts for methanol synthesis from CO2 and H2. Catal Today 45:215–220. https://doi.org/10.1016/S0920-5861(98)00218-1

    Article  CAS  Google Scholar 

  8. Wu J, Saito M, Mabuse H (2000) Activity and stability of Cu/ZnO/Al2O3 catalyst promoted with B2O3 for methanol synthesis. Catal Lett 68:55–58. https://doi.org/10.1023/A:1019010831562

    Article  CAS  Google Scholar 

  9. Zha F, Ding J, Chang Y, Ding J, Wang J, Ma J (2012) Cu-Zn-Al oxide cores packed by metal-doped amorphous silica-alumina membrane for catalyzing the hydrogenation of carbon dioxide to dimethyl ether. Ind Eng Chem Res 51:345–352. https://doi.org/10.1021/ie202090f

    Article  CAS  Google Scholar 

  10. Umegaki T, Kojima Y, Omata K (2015) Effect of silica coating on performance of copper-zinc oxide based catalyst for methanol synthesis. Adv Mater Lett 6:1026–1030. https://doi.org/10.5185/amlett.2015.5558

    Article  CAS  Google Scholar 

  11. Umegaki T, Kojima Y, Omata K (2015) Effect of oxide coating on performance of copper-zinc oxide-based catalyst for methanol synthesis via hydrogenation of carbon dioxide. Materials 8:7738–7744. https://doi.org/10.3390/ma8115414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JF, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902. https://doi.org/10.1021/ar2000259

    Article  CAS  PubMed  Google Scholar 

  13. Fang X, Liu Z, Hsieh MF, Chen M, Liu P, Chen C, Zheng N (2012) Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 6:4434–4444. https://doi.org/10.1021/nn3011703

    Article  CAS  PubMed  Google Scholar 

  14. Li X, John VT, He G, He J, Spinu L (2012) Magnetic TiO2–SiO2 hybrid hollow spheres with TiO2 nanofibers on the surface and their formation mechanism. J Mater Chem 22:17476–17484. https://doi.org/10.1039/C2JM31967E

    Article  CAS  Google Scholar 

  15. Awual MR, Hasan MM (2015) Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. J Ind Eng Chem 21:507–515. https://doi.org/10.1016/j.jiec.2014.03.013

    Article  CAS  Google Scholar 

  16. Zou H, Wang R, Shi Z, Dai J, Zhang Z, Qiu S (2016) One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water. J Mater Chem A 4:4145–4154. https://doi.org/10.1039/C6TA00708B

    Article  CAS  Google Scholar 

  17. Umegaki T, Ogawa R, Toyama N, Ohki S, Tansho M, Shimizu T, Kojima Y (2017) The influence of the pore structure of hollow silica–alumina composite spheres on their activity for hydrolytic dehydrogenation of ammonia borane. Inorg Chem Front 4:1568–1574. https://doi.org/10.1039/C7QI00338B

    Article  CAS  Google Scholar 

  18. Umegaki T, Ogawa R, Ohki S, Tansho M, Shimizu T, Kojima Y (2019) Control of pore size in shell of hollow silica–alumina composite spheres for hydrolytic dehydrogenation of ammonia borane. J Porous Mater 26:611–617. https://doi.org/10.1007/s10934-018-0665-5

    Article  CAS  Google Scholar 

  19. Cao L, Man T, Kruk M (2009) Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem Mater 21:1144–1153. https://doi.org/10.1021/cm8012733

    Article  CAS  Google Scholar 

  20. Ceratti DR, Faustini M, Sinturel C, Vayer M, Dahirel V, Jardat M, Grosso D (2015) Critical effect of pore characteristics on capillary infiltration in mesoporous films. Nanoscale 7:5371–5382. https://doi.org/10.1039/c4nr03021d

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Hu T, Zhang X, Huo K, Chu PK, He J (2010) One-step synthesis of monodisperse and hierarchically mesostructured silica particles with a thin shell. Langmuir 26:13556–13563. https://doi.org/10.1021/la101778z

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Zhang Y, Luo W, Elzatahry AA, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D (2016) Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted stöber method. Chem Mater 28:2356–2362. https://doi.org/10.1021/acs.chemmater.6b00499

    Article  CAS  Google Scholar 

  23. Ernawati L, Balgis R, Ogi T, Okuyama K (2017) Tunable synthesis of mesoporous silica particles with unique radially oriented pore structures from tetramethyl orthosilicate via oil-water emulsion process. Langmuir 33:783–790. https://doi.org/10.1021/acs.langmuir.6b04023

    Article  CAS  PubMed  Google Scholar 

  24. Umegaki T, Watanabe K, Ogawa H, Kojima Y (2020) Influence of swelling agents on pore size distributions of porous silica-alumina hollow sphere particles in acid-promoted hydrolytic generation of hydrogen from ammonia borane. Int J Hydrogen Energy 45:19531–19538. https://doi.org/10.1016/j.ijhydene.2020.05.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an ALCA (Advanced Low Carbon Technology Research and Development) project of Japan Science Technology Agency (JST) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Umegaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umegaki, T., Kojima, Y. & Omata, K. Influence of Pore Structure of Silica Coated on Copper-Zinc Oxide-Based Catalyst for Carbon Dioxide into Methanol. Top Catal 64, 576–581 (2021). https://doi.org/10.1007/s11244-021-01430-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01430-3

Navigation