Log in

A novel Cd(II) compound of flucytosine: synthesis, structure, and optical properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Background

The study and development of fluorouracil metal complexes are important in the development of new synthetic methods and materials with applications in pharmaceuticals, agrochemicals, and materials science.

Mothodology

A new Cd(II) compound, (H-5FC) [(H-5FC) Cd Cl ] (1), (where H-5FC is HFlucytosine), was successfully synthesized and crystallized by slow evaporation at room temperature. The compound was characterized by single-crystal X-ray diffraction technique and UV–Visible spectroscopy.

Results

The structure shows that the compound constitutes of an independent protonated (H-5FC)+ cation and two protonated flucytosine molecules that coordinate to the Cd(II) ion via an oxygen atom to form a trinuclear [(H-5FC)2Cd3Cl10]2− anionic moieties. The independent protonated (H-5FC)+ bridges the [(H-5FC)2Cd3Cl10]2− anions via N/C–H···Cl/O hydrogen bonds. Supramolecular structure analysis of (1) with the aid of Hirshfeld calculations showed the importance of the H···Cl, O···H, C···Cl, and F···Cl interactions. Their percentages were calculated to be 42.2, 10.3, 6.6, and 8.7%, respectively. The band gap energy of the compound, deduced from the Tauc plot of the absorption spectrum, indicated a wide energy gap of 3.65 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hulme AT, Tocher DA (2006) Cryst Growth Des 6:481–487

    Article  CAS  Google Scholar 

  2. Tilborg A, Norberg B, Wouters J (2014) Eur J Med Chem 74:411–426

    Article  CAS  PubMed  Google Scholar 

  3. Mohana M, Thomas MP, McMillen CD, Butcher RJ (2023) Acta Crystallog Sect C 79:61–67

    Article  CAS  Google Scholar 

  4. Surampudi AVSD, Ramakrishna S, Pallavi A, Balasubramanian S (2023) CrystEngComm 25:1220–1231

    Article  CAS  Google Scholar 

  5. Nechipadappu SK, and Balasubramanian S (2023) Acta Crystallographica section b: structural science, Crystal Eng Mater 79

  6. Firmino PP, Pedro HDO, da Silva CC, de Araujo-Neto JH and Ellena J (2023) J Molecul Struct 136075

  7. Mohapatra B, Verma S (2017) Chem Commun 53:4748–4758

    Article  CAS  Google Scholar 

  8. Lippert B, Müller J (2016) Inorg Chim Acta 100:1–2

    Article  Google Scholar 

  9. Sander SA, Morrow JR (2016) Inorg Chim Acta 452:90–97

    Article  CAS  Google Scholar 

  10. Bartova S, Alberti E, Sigel RK, Donghi D (2016) Inorg Chim Acta 452:104–110

    Article  CAS  Google Scholar 

  11. Capllonch MC, Garcı́a-Raso A, Terrón A, Apella MC, Espinosa E, Molins E (2001) J Inorg Biochem 85:173–178

    Article  CAS  PubMed  Google Scholar 

  12. Muthiah PT, Robert JJ, Raj SB, Bocelli G, Ollá R (2001) Acta Crystallogr Sect E: Struct Rep Online 57:m558–m560

    Article  CAS  Google Scholar 

  13. Stanley N, Muthiah PT, Luger P, Weber M, Geib S (2005) Inorg Chem Commun 8:1056–1059

    Article  CAS  Google Scholar 

  14. Waalkes MP, Poirier LA (1984) Toxicol Appl Pharmacol 75:539–546

    Article  CAS  PubMed  Google Scholar 

  15. Khandar AA, Azar ZM, Eskandani M, Hubschle CB, van Smaalen S, Shaabani B, Omidi Y (2019) Polyhedron 171:237–248

    Article  CAS  Google Scholar 

  16. Luo H-Y, Li J-Y, Li Y, Zhang L, Li J-Y, Jia D-Z, Xu G-C (2016) RSC Adv 6:114997–115009

    Article  CAS  Google Scholar 

  17. Fedorov B, Fadeev M, Utenyshev A, Shilov G, Konovalova N, Tatyanenko L, Sashenkova T, Blokhina S, Berseneva E (2011) Russian Chem Bull 60:1959–1962

    Article  CAS  Google Scholar 

  18. Montazerozohori M, Zahedi S, Nasr-Esfahani M, Naghiha A (2014) J Ind Eng Chem 20:2463–2470

    Article  CAS  Google Scholar 

  19. You ZL, Zhu HL (2006) Z Anorg Allg Chem 632:140–146

    Article  CAS  Google Scholar 

  20. Netalkar PP, Netalkar SP, Revankar VK (2015) Polyhedron 100:215–222

    Article  CAS  Google Scholar 

  21. Azam M, Khan AA, Al-Resayes SI, Islam MS, Saxena AK, Dwivedi S, Musarrat J, Trzesowska-Kruszynska A, Kruszynski R (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 142:286–291

    Article  CAS  Google Scholar 

  22. Grunberg E, Titsworth E, Bennett M (1964) Chemotherapeutic activity of 5-fluorocytosine 566–568

  23. Vermes A, Guchelaar H-J, Dankert J (2000) J Antimicrob Chemotherapy 46:171–179

    Article  CAS  Google Scholar 

  24. Benson J, Nahata M (1988) Clin Pharm 7:424–438

    CAS  PubMed  Google Scholar 

  25. Nyati M, Symon Z, Kievit E, Dornfeld K, Rynkiewicz S, Ross B, Rehemtulla A, Lawrence T (2002) Gene Ther 9:844–849

    Article  CAS  PubMed  Google Scholar 

  26. Delma FZ, Al-Hatmi AM, Brüggemann RJ, Melchers WJ, de Hoog S, Verweij PE, Buil JB (2021) J Fungi 7:909

    Article  CAS  Google Scholar 

  27. Portalone G, Colapietro M (2006) Acta Crystallogr Sect E Struct Rep Online 62:o1049–o1051

    Article  CAS  Google Scholar 

  28. Tutughamiarso M, Bolte M, Egert E (2009) Acta Crystallogr C 65:o574–o578

    Article  CAS  PubMed  Google Scholar 

  29. Da Silva CC, de Oliveira R, Tenorio JC, Honorato SB, Ayala AP, Ellena J (2013) Cryst Growth Des 13:4315–4322

    Article  Google Scholar 

  30. Prabakaran P, Murugesan S, Muthiah PT, Bocelli G, Righi L (2001) Acta Crystallogr Sect E Struct Rep Online 57:o933–o936

    Article  CAS  Google Scholar 

  31. Portalone G, Colapietro M (2007) J Chem Crystallogr 37:141–145

    Article  CAS  Google Scholar 

  32. Perumalla SR, Pedireddi VR, Sun CC (2013) Cryst Growth Des 13:429–432

    Article  CAS  Google Scholar 

  33. Perumalla SR, Pedireddi VR, Sun CC (2013) Mol Pharm 10:2462–2466

    Article  CAS  PubMed  Google Scholar 

  34. Portalone G (2011) Chem Cent J 5:1–8

    Article  Google Scholar 

  35. Tutughamiarso M, Wagner G, Egert E (2012) Acta Crystallogr B 68:431–443

    Article  CAS  PubMed  Google Scholar 

  36. Tutughamiarso M, Egert E (2012) Acta Crystallogr B 68:444–452

    Article  CAS  PubMed  Google Scholar 

  37. Bruker BAI (2016) APEX3 Crystallography Software Suite, Madison, vol 2016. WI, USA

    Google Scholar 

  38. Bruker A, Saint A (2008) Acta Crystallogr Sect A Fundam Crystallogr 64:112

    Article  Google Scholar 

  39. Sheldrick G (2015) Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  40. Sheldrick G (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  41. Sadabs BAI (2017) Madison. Wisconsin, USA

    Google Scholar 

  42. Farrugia L (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  43. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) J Appl Crystallogr 53:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin L-L, Ye H-Y, Wang D-Y (2014) Inorg Chem Commun 46:47–50

    Article  CAS  Google Scholar 

  45. Sun X-F, Wang Z, Liao W-Q, Li P-F, Gao J, Huang Y-Y, Chen H-P, Ye H-Y, Zhang Y (2017) RSC Adv 7:52024–52029

    Article  CAS  Google Scholar 

  46. Karthikeyan A, Zeller M, Thomas Muthiah P (2018) Acta Crystallogr Sect C Struct Chem 74:789–796

    Article  CAS  Google Scholar 

  47. Silverstein RM, Bassler GC (1962) J Chem Educ 39:546

    Article  CAS  Google Scholar 

  48. Palafox MA, Rastogi VK (2015) Asian Chem Lett 19:01–2533

    Google Scholar 

  49. Gunasekaran S, Seshadri S, Muthu S (2006) Indian J Pure Appl Phys 44:581–586

    CAS  Google Scholar 

  50. Sharma V, Sharma S, Sharma V (1995) Asian J Chem 7:855

    CAS  Google Scholar 

  51. Seshadri S, Gunasekaran S, Muthu S, Kumaresan S, Arunbalaji R (2007) J Raman Spectro Int J Orig Work Asp Raman Spectro Includ Higher Order Process Brillouin Rayleigh Scatter 38:1523–1531

    CAS  Google Scholar 

  52. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  53. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  54. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) J Appl Crystallogr 54:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cavalieri LF, Bendich A (1950) J Am Chem Soc 72:2587–2594

    Article  CAS  Google Scholar 

  56. Makuła P, Pacia M, Macyk W (2018) ACS Publications, pp. 6814–6817

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023114. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Author information

Authors and Affiliations

Authors

Contributions

H.F. and D.C.DO. wrote the main manuscript text, M.F analyzed the structure by SCXRD and refined the structure, N.S. A and N.P. R prepared figures and data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hela Ferjani.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11243_2023_562_MOESM1_ESM.docx

Supplementary file1 (DOCX 1859 KB): CCDC-2249554 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Additional figures and tables (Figures 1S to 5S and scheme 1; Tables 1S) pertaining to the structure and spectra are given in electronic supplementary information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferjani, H., Almotlaq, N.S., Fettouhi, M. et al. A novel Cd(II) compound of flucytosine: synthesis, structure, and optical properties. Transit Met Chem 49, 67–74 (2024). https://doi.org/10.1007/s11243-023-00562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00562-7

Keywords

Navigation