Log in

Synthesis, biological activities studies of ruthenium(II) polypyridyl complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four ruthenium(II) polypyridyl complexes were synthesized and characterized by elemental analysis, IR, ESI-MS and 1H NMR. The in vitro cytotoxicities of the complexes against BEL-7402, HeLa, A549, HepG2 and MG-63 cancer cells were investigated by MTT methods, giving IC50 values ranging from 6.9 to 43.5 μM. The complexes show their highest inhibitory effect on MG-63 cells, but no cytotoxic activities against HeLa cells. Cellular uptake experiments indicate that the complexes can enter the cytoplasm and accumulate in the cell nuclei. The complexes can induce apoptosis in MG-63 cells, enhance the levels of reactive oxygen species, and induce a decrease in mitochondrial membrane potential. The cell cycle distribution shows that the complexes induce cell cycle arrest at S phase in MG-63 cells. Additionally, these complexes can up-regulate the levels of Bad and Bid expression and down-regulate the expression of Bcl-2 and Bcl-x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kelly JM, Murphy MJ, Mcconnell DJ, Ohuigin CA (1985) Nucl Acids Res 13:167–184

    Article  CAS  Google Scholar 

  2. Zuber G, Quada JC Jr, Hecht SM (1998) J Am Chem Soc 120:9368–9369

    Article  CAS  Google Scholar 

  3. Hecht SM (2000) J Nat Prod 63:158–168

    Article  CAS  Google Scholar 

  4. Zhao XF, Ouyang Y, Liu YZ, Su QJ, Tian H, **e CZ, Xu JY (2014) New J Chem 38:955–965

    Article  CAS  Google Scholar 

  5. Rosenberg B, Vancamp L (1969) Nature 222:385–386

    Article  CAS  Google Scholar 

  6. Beckford FA, Stott A, Gonzalez-Sarrías A, Seeram NP (2013) Appl Organomet Chem 27:425–434

    Article  CAS  Google Scholar 

  7. Bratsos I, Jedner S, Gianferrara T, Alessio E (2007) Chimia 61:692–697

    Article  CAS  Google Scholar 

  8. Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK (2014) Chem Sci 5:2925–2932

    Article  CAS  Google Scholar 

  9. Gill MR, Garcia-Lara J, Foster SJ, Smythe C, Battaglia G, Thomas JA (2009) Nat Chem 1:662–667

    Article  CAS  Google Scholar 

  10. Puckett CA, Ernst RJ, Barton JK (2010) Dalton Trans 39:1159–1170

    Article  CAS  Google Scholar 

  11. Cook NP, Torres V, Jain D, Martí AA (2011) J Am Chem Soc 133:11121–11123

    Article  CAS  Google Scholar 

  12. Gill MR, Thomas JA (2012) Chem Soc Rev 41:3179–3192

    Article  CAS  Google Scholar 

  13. Zhao ZN, Luo ZD, Wu Q, Zheng WJ, Feng YX, Chen TF (2014) Dalton Trans 43:17017–17028

    Article  CAS  Google Scholar 

  14. Han BJ, Jiang GB, Wang J, Li W, Huang HL, Liu YJ (2014) RSC Adv 4:40899–40906

    Article  CAS  Google Scholar 

  15. Li W, Han BJ, Yao JH, Jiang GB, Liu YJ (2015) RSC Adv 5:24534–24543

    Article  CAS  Google Scholar 

  16. Huang HY, Zhang PY, Yu BL, Wang JQ, Ji LN, Chao H (2014) J Med Chem 57:8971–8983

    Article  CAS  Google Scholar 

  17. Peña B, David A, Pavani C, Baptista MS, Pellois JP, Turro C, Dunbar KR (2014) Organometallics 33:1100–1103

    Article  Google Scholar 

  18. Mazuryk O, Suzenet F, Kieda C, Brindell M (2015) Metallomics 7:553–566

    Article  CAS  Google Scholar 

  19. Xu L, Zhong NJ, **e YY, Lin GJ, Huang HL, Jiang GB, Liu YJ (2014) PLoS One 9:e96082

    Article  Google Scholar 

  20. Jiang GB, Yao JH, Wang J, Li W, Han BJ, Lin GJ, **e YY, Huang HL, Liu YJ (2014) New J Chem 38:2554–2563

    Article  CAS  Google Scholar 

  21. Li W, Jiang GB, Yao JH, Wang XZ, Wang J, Han BJ, **e YY, Lin GJ, Huang HL, Liu YJ (2014) J Photochem Photobiol B Biol 140:94–104

    Article  CAS  Google Scholar 

  22. Bilakhiya AK, Tyagi B, Paul P (2002) Inorg Chem 41:3830–3842

    Article  CAS  Google Scholar 

  23. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341

    Article  CAS  Google Scholar 

  24. Collin JP, Sauvage JP (1986) Inorg Chem 25:135–141

    Article  CAS  Google Scholar 

  25. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  26. Lo KK, Lee TK, Lau JS, Poon WL, Cheng SH (2008) Inorg Chem 47:200–208

    Article  CAS  Google Scholar 

  27. **e YY, Huang HL, Yao JH, Lin GJ, Jiang GB, Li YJ (2013) Eur J Med Chem 63:603–610

    Article  CAS  Google Scholar 

  28. Jiang GB, **e YY, Lin GJ, Huang HL, Liang ZH, Liu YJ (2013) J Photochem Photobiol B Biol 129:48–56

    Article  CAS  Google Scholar 

  29. Alapetite C, Wachter T, Sage E, Moustacchi E (1996) Int J Radiat Biol 69:359–369

    Article  CAS  Google Scholar 

  30. Rodriguez LG, Wu X, Guan JL (2005) Methods Mol Biol 294:23–29

    Google Scholar 

  31. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) N Engl J Med Chem 361:1570–1583

    Article  CAS  Google Scholar 

  32. Yang XX, Chen LM, Liu YN, Yang YG, Chen TF, Zheng WJ, Liu J, He QY (2012) Biochimie 94:345–353

    Article  CAS  Google Scholar 

  33. Salvesen GS, Dixit VM (1997) Cell 91:443–446

    Article  CAS  Google Scholar 

  34. Thornberry NA, Lazebnik Y (1998) Science 281:1312–1316

    Article  CAS  Google Scholar 

  35. Saha S, Majumdar R, Roy M, Dighe RR, Chakravarty AR (2009) Inorg Chem 48:2652–2663

    Article  CAS  Google Scholar 

  36. Raja DS, Bhuvanesh NSP, Natarajan K (2011) Eur J Med Chem 46:4584–4594

    Article  CAS  Google Scholar 

  37. Ramachandran E, Thomas SP, Poornima P, Kalaivani P, Prabhakaran R, Padma VV, Natarajan K (2012) Eur J Med Chem 50:405–415

    Article  CAS  Google Scholar 

  38. Raja DS, Bhuvanesh NSP, Natarajan K (2012) Dalton Trans 41:4365–4377

    Article  CAS  Google Scholar 

  39. Raja DS, Ramachandran E, Bhuvanesh NSP, Natarajan K (2013) Eur J Med Chem 64:148–159

    Article  Google Scholar 

  40. Stern O, Volmer M (1919) Über die abklingzeit der fluoreszenz. Zeitschriff fur Physik 20:183–188

    CAS  Google Scholar 

  41. Sathyadevi P, Krishnamoorthy P, Bhuvanesh NSP, Kalaiselvi P, Padma VV, Dharmaraj N (2012) Eur J Med Chem 55:420–431

    Article  CAS  Google Scholar 

  42. Feng XZ, Yang Z, Wang LJ, Bai C (1998) Talanta 47:1223–1229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science foundation of Guangdong Province (No. 2016A030313728), the High-Level Personnel Project of Guangdong Province in 2013 and the Joint Nature Science Fund of the Department of Science and Technology and the First Affiliated Hospital of Guangdong Pharmaceutical University (No. GYFYLH201315) and the Project of Innovation for Enhancing Guangdong Pharmaceutical University, Provincial Experimental Teaching Demonstration Center of Chemistry and Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **u-Zhen Wang or Yun-Jun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Han, BJ., Wan, D. et al. Synthesis, biological activities studies of ruthenium(II) polypyridyl complexes. Transit Met Chem 42, 373–386 (2017). https://doi.org/10.1007/s11243-016-0106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-016-0106-8

Keywords

Navigation