Log in

Synthesis of bridging hydrides of phenyl-functionalized diiron propanedithiolate complexes with 1,2-bis(diphenylphosphine)ethylene or 1,2-bis(diphenylphosphine)ethane ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reaction of 2-phenyl-1,3-dibromopropane with in situ generated (μ-SLi)2Fe2(CO)6 yielded a known complex [(μ-SCH2)2CHC6H5]Fe2(CO)6 (A). Displacement of two carbonyls from complex A by cis-1,2-bis(diphenylphosphine)ethylene (dppv) or 1,2-bis(diphenylphosphine)ethane (dppe) in the presence of Me3NO·2H2O gave two chelate complexes [(μ-SCH2)2CHC6H5]Fe2(CO)4(κ 2-dppv), [A(κ 2-dppv)] and [(μ-SCH2)2CHC6H5]Fe2(CO)4(κ 2-dppe), [A(κ 2-dppe)], respectively. Protonation of the diiron centers of [A(κ 2-dppv)] and [A(κ 2-dppe)] using an excess of HBF4·Et2O in dichloromethane at room temperature gave the bridging hydrides [(μ-H)A(κ 2-dppv)]BF4 and [(μ-H)A(κ 2-dppe)]BF4. The complexes [(μ-H)A(κ 2-dppv)]BF4, [A(κ 2-dppe)] and [(μ-H)A(κ 2-dppe)]BF4 were characterized by elemental analysis and spectroscopic methods, and [(μ-H)A(κ 2-dppv)]BF4 and [(μ-H)A(κ 2-dppe)]BF4 were also characterized by X-ray crystallography. The electrochemical behavior of [(μ-H)A(κ 2-dppv)]BF4 was investigated by cyclic voltammetry, and the catalytic electrochemical reduction in protons from trifluoroacetic acid or p-methylbenzene sulfonic acid to give hydrogen was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081

    Article  CAS  Google Scholar 

  2. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273

    Article  CAS  Google Scholar 

  3. Vignais PM, Billoud B (2007) Chem Rev 107:4206

    Article  CAS  Google Scholar 

  4. Adams MWW (1990) Biochim Biophys Acta 1020:115

    Article  CAS  Google Scholar 

  5. Tard C, Pickett CJ (2009) Chem Rev 109:2245

    Article  CAS  Google Scholar 

  6. Gloaguen F, Rauchfuss TB (2009) Chem Soc Rev 38:100

    Article  CAS  Google Scholar 

  7. Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Coord Chem Rev 253:1476

    Article  CAS  Google Scholar 

  8. Georgakaki IP, Thomson LM, Lyon EJ, Hall MB, Darensbourg MY (2003) Coord Chem Rev 238–239:255

    Article  Google Scholar 

  9. Simmons TR, Berggren G, Bacchi M, Fontecave M, Artero V (2014) Coord Chem Rev 270–271:127

    Article  Google Scholar 

  10. Liu XM, Ibrahim SK, Tard C, Pickett CJ (2005) Coord Chem Rev 249:1641

    Article  CAS  Google Scholar 

  11. Capon JF, Gloaguen F, Schollhammer P, Talarmin J (2005) Coord Chem Rev 249:1664

    Article  CAS  Google Scholar 

  12. Peters JW, Lanzilotta WN, Lemon BJ (1998) Science 282:1853

    Article  CAS  Google Scholar 

  13. Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Structrue 7:13

    Article  CAS  Google Scholar 

  14. Wang N, Wang M, Chen L, Sun LC (2013) Dalton Trans 42:12059

    Article  CAS  Google Scholar 

  15. Carroll ME, Barton BE, Rauchfuss TB, Patrick J (2012) J Am Chem Soc 134:18843

    Article  CAS  Google Scholar 

  16. Wang WG, Rauchfuss TB, Zhu LY (2014) J Am Chem Soc 136:5773

    Article  CAS  Google Scholar 

  17. Zhao X, Georgakaki IP, Miller ML, Yarbrough JC, Darensbourg MY (2001) J Am Chem Soc 123:9710

    Article  CAS  Google Scholar 

  18. Ezzaher S, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2007) Inorg Chem 46:3426

    Article  CAS  Google Scholar 

  19. Nehring JL, Heinekey DM (2003) Inorg Chem 42:4288

    Article  CAS  Google Scholar 

  20. Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D (2013) Dalton Trans 42:6775

    Article  CAS  Google Scholar 

  21. Adam FI, Hogarth G, Kabir SE, Richards I (2008) C R Chim 11:890

    Article  CAS  Google Scholar 

  22. Li CG, Zhu Y, Jiao XX, Fu XQ (2014) Polyhedron 67:416

    Article  CAS  Google Scholar 

  23. Li CG, Xue F, Cui MJ, Shang JY (2014) J Clust Sci 25:1641

    Article  Google Scholar 

  24. Li CG, Xue F, Cui MJ, Shang JY, Lou TJ (2015) Transit Met Chem 40:47

    Article  CAS  Google Scholar 

  25. Seyferth D, Henderson RS, Song LC (1982) Organometallics 1:125

    Article  CAS  Google Scholar 

  26. Li CG, Li YF, Shang JY, Lou TJ (2014) Transit Met Chem 39:373

    Article  CAS  Google Scholar 

  27. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    Article  CAS  Google Scholar 

  28. Sheldrick GM (2008) Acta Cryst A64:112

    Article  Google Scholar 

  29. Seyferth D, Henderson RS, Song LC (1980) J Organomet Chem 192:C1

    Article  CAS  Google Scholar 

  30. Morvan D, Capon JF, Gloaguen F, Le Goff A, Marchivie M, Michaud F, Schollhammer P, Talarmin J, Yaouanc JJ, Pichon R, Kervarec N (2007) Organometallics 26:2042

    Article  CAS  Google Scholar 

  31. Barton BE, Zampella G, Justice AK, De Gioia L, Rauchfuss TB, Wilson SR (2010) Dalton Trans 39:3011

    Article  CAS  Google Scholar 

  32. Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681

    Article  CAS  Google Scholar 

  33. Gloaguen F, Lawrence JD, Rauchfuss TB, Bénard M, Rohmer MM (2002) Inorg Chem 41:6573

    Article  CAS  Google Scholar 

  34. Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476

    Article  CAS  Google Scholar 

  35. Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Dalton Trans 4158

  36. Borg SJ, Behrsing T, Best SP, Razavet M, Liu X, Pickett CJ (2004) J Am Chem Soc 126:16988

    Article  CAS  Google Scholar 

  37. Felton GAN, Glass RS, Lichtenberger DL, Evans DH (2006) Inorg Chem 45:9181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Chinese National Natural Science Foundation (No. 21072046) and the Chinese National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201210467022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Gong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CG., Zhang, GF., Zhu, Y. et al. Synthesis of bridging hydrides of phenyl-functionalized diiron propanedithiolate complexes with 1,2-bis(diphenylphosphine)ethylene or 1,2-bis(diphenylphosphine)ethane ligands. Transition Met Chem 40, 477–484 (2015). https://doi.org/10.1007/s11243-015-9937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9937-y

Keywords

Navigation