Log in

Kinetics and mechanism of base hydrolysis of tris(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II) in aqueous and micellar media

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of base hydrolysis of tris(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II), \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) has been studied in aqueous, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) media at 25, 35 and 45 °C under pseudo-first-order conditions, i.e. \( [ {\text{OH}}^{ - } ]\gg [{\text{Fe(PDT)}}_{ 3}^{2 + } ] \). The reactions are first order in both of substrate \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) and hydroxide ion. The rates decrease with increasing ionic strength in aqueous and CTAB media, whereas SDS medium shows little ionic strength effect. The rate also increases with CTAB concentration but decreases with SDS. The specific rate constant, k and thermodynamic parameters (E a, ΔH #, ΔS # and ΔG #) have also been evaluated. The near equal values of ΔG # obtained in aqueous and CTAB media suggest that these reactions occur essentially by the same mechanism such that \( {\text{Fe(PDT)}}_{ 3}^{2 + } \) reacts with OH in the rate-determining step. The ionic strength effect in SDS medium suggests that the rate-determining step involves an ion and a neutral species. The results in this study are compared with those obtained for other iron(II)-bipyridine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Scheme 4

Similar content being viewed by others

References

  1. Lee T, Kolthoff I, Leussing D (1948) J Am Chem Soc 70:3596–3600

    Article  CAS  Google Scholar 

  2. Baxendale J, George P (1950) Trans Faraday Soc 46:736–744

    Article  CAS  Google Scholar 

  3. Baxendale J, George P (1950) Trans Faraday Soc 46:55–63

    Article  CAS  Google Scholar 

  4. Margerum D (1957) J Am Chem Soc 79:2728–2733

    Article  CAS  Google Scholar 

  5. Blandamer MJ, Burgess J (1979) Pure Appl Chem 51:2087–2092

    Article  CAS  Google Scholar 

  6. Blandamer MJ, Burgess J (1980) Coor Chem Rev 31:93–121

    Article  CAS  Google Scholar 

  7. Mandal HK, Majumdar T, Mahapatra A (2011) Int J Chem Kinet 43:579–589

    CAS  Google Scholar 

  8. Sarkar D, Khilar K, Begum G, SubbaRao P (2005) Colloids Surfaces A: Physico Eng Asp 268:73–77

    Article  CAS  Google Scholar 

  9. Burgess J, Prince R (1965) J Chem Soc, pp. 6061–6066

  10. Kundu A, Dasmandal S, Majumdar T, Mahapatra A (2014) Colloids Surfaces A: Physico Eng Asp 452:148–153

    Article  CAS  Google Scholar 

  11. Blandamer MJ, Burgess J, Chambers JG, Haines RI, Marshall HE (1977) J Chem Soc Dalton Trans, pp. 165–170

  12. Bellam R, Anipindi NR (2014) Trans Met Chem 39:311–326

    Article  CAS  Google Scholar 

  13. Stephen W, Islam M (1993) Anal Chim Acta 274:335–346

    Article  CAS  Google Scholar 

  14. Hartley G (1941) Transa Faraday Soc 37:130–133

    Article  CAS  Google Scholar 

  15. Jada A, Lang J, Candau SJ, Zana R (1989) Colloid Surfaces 38:251–261

    Article  CAS  Google Scholar 

  16. Menger FM (1979) Acc Chem Res 12:111–117

    Article  CAS  Google Scholar 

  17. Gangwar S, Rafiquee M (2007) Int J Chem Kinet 39:638–644

    Article  CAS  Google Scholar 

  18. Cordes E, Gitler C (1972) Prog Bioorg Chem 2:1–53

    Article  Google Scholar 

  19. Bunton C (1979) Catal Rev Sci Eng 20:1–56

    Article  CAS  Google Scholar 

  20. Rao PS, Rao GK, Ramakrishna K, Murty P (1991) React Kinet Catal Lett 43:209–216

    Article  CAS  Google Scholar 

  21. Menger FM, Portnoy CE (1967) J Am Chem Soc 89:4698–4703

    Article  CAS  Google Scholar 

  22. Bunton CA, Cerichelli G (1980) Inter J Chem Kinet 12:519–533

    Article  CAS  Google Scholar 

  23. Bunton CA (1991) Surfactants in solution. Springer, New York, pp 17–40

    Book  Google Scholar 

  24. Bacaloglu R, Bunton CA, Cerichelli G, Ortega F (1989) J Phy Chem 93:1490–1497

    Article  CAS  Google Scholar 

  25. Berezin IV, Martinek K, Yatsimirskii AK (1973) Russ Chem Rev 42:787–802

    Article  Google Scholar 

  26. Martinek K, Yatsimirsky A, Levashov A, Beresin I, Mittal K (1977) In: Mittal KL (ed) Plenum Press, New York

  27. Berezin I, Martinek K, Yatsimirsky A (1973) Usp Khim 42:1729–1756

    CAS  Google Scholar 

  28. Kundu A, Dasmandal S, Majumdar T, Mahapatra A (2013) Colloid Surfaces A: Physico Eng Asp 419:216–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswara Rao Anipindi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellam, R., Raju, G.G., Anipindi, N.R. et al. Kinetics and mechanism of base hydrolysis of tris(3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine)iron(II) in aqueous and micellar media. Transition Met Chem 41, 271–278 (2016). https://doi.org/10.1007/s11243-015-0018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-0018-z

Keywords

Navigation