Log in

Kinetic determination of silver at trace level based on its catalytic effect on a ligand substitution reaction

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

It is observed that Ag(I) catalyzes the rate of substitution of phenylhydrazine (PhNHNH2) into hexacyanoferrate(II), producing a cherry red colored complex, [Fe(CN)5PhNHNH2]3−. The reaction was monitored at 488 nm leading to the formation of the complex under the conditions: [Fe(CN)6]4− (5.0 × 10−3 mol dm−3), PhNHNH2 (2.0 × 10−3 mol dm−3), temperature (25 ± 0.1 °C), pH (2.8 ± 0.02), and ionic strength, I (0.02 mol dm−3), (KNO3). Under optimum conditions, absorbance at fixed times (A t ) is linearly related to Ag(I) in the concentration range 10.79–97.08 ng cm−3, in the presence of several diverse ions. The highest percentage error and relative standard deviations in the entire range of Ag(I) determination are found to be 2.5% and 0.16, with a detection limit of 8.75 ng cm−3 of silver(I). The experimental accuracies expressed in terms of percentage recoveries are in the range of 97.87–102.50. The method was successfully applied for the determination of Ag(I) in a few synthetic samples and found to be in good agreement with those obtained from atomic absorption spectrophotometry (AAS). The validity of the proposed method has also been tested for Ag(I) determination in spiked drinking water samples. The present catalytic kinetic method (CKM) is highly sensitive, selective, reproducible, and inexpensive. A review of recently published catalytic spectrophotometric methods for determination of Ag(I) has also been presented for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrophotometry

BPT:

4,7-biphenyl-1,10-phenanthroline

CKM:

Catalytic kinetic method

DRD:

Dynamic range of detection

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

HEDTA:

N-(2-hydroxyethyl)ethylenediaminetriacetic acid

HMBPTS:

2-hydroxy-4-methoxybenzophenonethiosemicarbazide

IDA:

Imino-diacetic acid

NTA:

Nitrilotriacetic acid

PhNHNH2 :

Phenylhydrazine

RSD:

Relative standard deviation

SMs:

Synthetic mixtures

SPM:

Spectrophotometric method

References

  1. Nebeker AV, McAuliffe CK, Mshar R, Stevens DF (1983) Toxicol Chem 2:95

    Article  CAS  Google Scholar 

  2. Patein G, Robin L (1909) Bull Gen Ther 58:898

    Google Scholar 

  3. Hill WR, Pillsubury Argyria DM (1939) The pharmacology of silver. William Wilkinson, Baltimore

    Google Scholar 

  4. Dietl HW, Anzil AP, Mchraein P (1984) Clin Neuropathol 3:32

    CAS  Google Scholar 

  5. Fowler BA, Nordberg GF (1986) Handbook on the toxicology of metals, vol II, 2nd edn. Elsevier/North-Holland, Amsterdam, p 521

  6. Jackson KW, Qiao H (1992) Anal Chem 64:50R

    Article  CAS  Google Scholar 

  7. Avila AK, Curtius AJ (1994) J Anal At Spectrom 9:543

    Article  CAS  Google Scholar 

  8. Bermejo-Barrera P, Moreda-Pineiro A, Bermejo-Barrera A (1996) Talanta 43:35

    Article  CAS  Google Scholar 

  9. Kabasakalis V (1994) Anal Lett 27:2789

    CAS  Google Scholar 

  10. Dole AJ, Cardwell TJ, Scollary GR (1998) Electroanalysis 10:21

    Article  CAS  Google Scholar 

  11. Wang J, Martinez T (1988) Anal Chim Acta 207:95

    Article  CAS  Google Scholar 

  12. Mottola HA (1988) In: Winefordner JD (ed) Kinetic aspects of analytical chemistry in chemical analysis, vol 96. Wiley Interscience, New York

  13. Yatsimirskii KB (1966) Kinetic methods of analysis. Pergamon Press, Oxford

    Google Scholar 

  14. Kawashima T, Nakano S, Tabata M, Tanaka M (1997) Trends Anal Chem 16:132

    Article  CAS  Google Scholar 

  15. Prasad S, Halafithi T (2003) Mikrochim Acta 142:237

    CAS  Google Scholar 

  16. Prasad S (2003) Assian J Chem 15:1

    CAS  Google Scholar 

  17. Nagaraja P, Mattighatta S, Kumar H, Yathirajan HS (2002) Anal Sci 18:815 and refs. therein

  18. Sulka GD, Jaskula M (1999) Anal Chim Acta 394:185

    Article  CAS  Google Scholar 

  19. Pourreza N, Parham H, Hashmi F (2003) J Anal Chem 58(4):333

    Article  CAS  Google Scholar 

  20. Hermandez Cordoba M, Sanchez-Pedreno C, Vinas Lopez-Pelegrin P (1985) Quim Anal (Barcelona) 4(2):159

    Google Scholar 

  21. Prasad KMMK, Subashchandran KP (1992) Assian J Chem 4:715

    Google Scholar 

  22. Ensafi AA, Abbasi S (1997) Anal Lett 30:327

    CAS  Google Scholar 

  23. Zhaosheng Z, Yaoguang W, Fengyuan L, Jianhua Z (1988) Fenxi Huaxue 16:138

    Google Scholar 

  24. Tabatabafe M, Nateghi MR, Mosavi SJ (2006) Anal Sci 22:1601

    Article  Google Scholar 

  25. Safavi A, Mirzajani R (2002) Anal Sci 18:329

    Article  CAS  Google Scholar 

  26. Shimei F, Huijun L, Guiyou M, Weiying G (1996) Environ Prot Chem Ind 16:234

    Google Scholar 

  27. Venkateshwarlu T, Raman S, Reddy BR (1990) Indian J Chem Sect A 29A:930 and refs. therein

  28. Chuanying G, Xuguang Z, Guiyou M (1993) Lihua Jianyan 29:35

    Google Scholar 

  29. Reddy KV, Chennaiah A, Reddy PR, Reddy TS (2003) Chem Anal (Warsaw) 48:733

    CAS  Google Scholar 

  30. Qin W, Guohua C, **hu Y, Du Bin (2003) Anal Lett 36:627

    Article  Google Scholar 

  31. Mingli W, ** F (1990) Lihua Jianyan 2:29

    Google Scholar 

  32. Reddy KPPRM, Chowdry PG, Reddy VK, Reddy PR (2007) Annali di Chimica 97:1207

    Article  CAS  Google Scholar 

  33. Haghighi B, Safavi A (1999) Fresenius J Anal Chem 365:654

    Article  CAS  Google Scholar 

  34. Naik RM, Tewari RK, Singh PK, Tewari A, Prasad S (2005) Transition Met Chem 30:968

    Article  CAS  Google Scholar 

  35. Naik RM, Sarkar J, Chaturvedi DD (2005) Int J Chem Kin 37:222

    Article  CAS  Google Scholar 

  36. Prasad S (2003) Transition Met Chem 28:1

    Article  CAS  Google Scholar 

  37. Naik RM, Tewari RK, Singh PK. Yadav SBS (2007) Int J Chem Kin 39:447

    Article  CAS  Google Scholar 

  38. Weast RC (1969) CRC hand book of chemistry and physics, 49th edn. The Chemical Rubber Co., Ohio, D-79

  39. Naik RM, Tiwari RK, Singh PK, Verma AK (2007) Inorg React Mech 6:217

    CAS  Google Scholar 

  40. Eaton WA, George P, Hanaria GH (1967) J Phys Chem 71:2016

    Article  CAS  Google Scholar 

  41. Mukherjee R, Dhar BB, Banerjee R, Mukhopadhyay S (2006) J Coord Chem 59:1157

    Article  Google Scholar 

  42. Prasad S (2005) J Anal Chem 60:581

    Article  CAS  Google Scholar 

  43. Raman S, Reddy BR (1989) Indian J Chem 28A:599

    Google Scholar 

  44. Raman S Reddy BR (1984) Indian J Chem 23A:48

    Google Scholar 

  45. Raman S, Reddy BR (1984) Proc Indian Ntn Sci Acad 50A:33

    Google Scholar 

  46. Raman S, Reddy BR (1984) Indian J Chem 23A:616

    Google Scholar 

Download references

Acknowledgment

The corresponding author, Dr. R. M. Naik is grateful to Council of Scientific Industrial Research (CSIR), New Delhi, India for providing financial assistance to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey M. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, R.M., Tiwari, R.K., Singh, P.K. et al. Kinetic determination of silver at trace level based on its catalytic effect on a ligand substitution reaction. Transition Met Chem 33, 615–623 (2008). https://doi.org/10.1007/s11243-008-9088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-008-9088-5

Keywords

Navigation