Log in

Pore-Scale Flow Effects on Solute Transport in Turbulent Channel Flows Over Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Solute transport and mixing at channel-flow–porous media interfaces are strongly influenced by velocity and turbulence structures near porous media, and such coupled channel-flow–porous media systems are commonly observed in nature. However, the effects of pore-scale flows on solute transport in the coupled systems are currently unclear. In this study, we combine particle image velocimetry experiments and large eddy simulations to resolve the pore-scale flow characteristics over and within a porous bed. Then, we perform solute transport simulations by coupling the pore-scale flow fields with a particle-tracking model and show that the pore-scale flows inherent to porous media structure control solute transport. Pore-scale flow properties such as preferential downward–upward flows and vortices occurring near the channel-flow–porous media interface are shown to exert dominant control over interfacial mass exchange and solute transport. To clarify the effects of pore-scale flows on reach-scale transport, we conduct macroscale transport modeling with a spatially averaged stream-wise velocity profile. Because the profile-based model does not incorporate important pore-scale flow features, it significantly overestimates mass transfer into the porous bed, thereby exacerbating late-time tailings in breakthrough curves. Finally, a spatial Markov model, a type of upscaled stochastic transport model, is shown to effectively capture the pore-scale interfacial transport mechanisms via a velocity transition matrix. Our findings confirm that solute transport through channel-flow–porous media interfaces is controlled not only by interfacial turbulent-mixing profiles but also by detailed pore-scale flow structures.

Article Highlights

  • We demonstrate the effects of pore-scale flows on solute transport in coupled turbulent channel-flow–porous media systems

  • Pore structure near the interface exerts dominant control over interfacial mass exchange and solute transport

  • Spatial Markov model effectively upscales the effects of pore-scale flows on solute transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7.
Fig. 8.
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The experimental data are freely available through a data repository system at the University of Minnesota (https://doi.org/10.13020/qe5z-sj53).

References

  • Arthur, J.K.: Experimental investigation of porous medium structural effects on a coupled porous media-free zone laminar flow. SN Appl. Sci. 1(9), 1–13 (2019)

    Article  Google Scholar 

  • Aubeneau, A.F., Hanrahan, B., Bolster, D., Tank, J.L.: Substrate size and heterogeneity control anomalous transport in small streams. Geophys. Res. Lett. 41(23), 8335–8341 (2014)

    Article  Google Scholar 

  • Battiato, I., Rubol, S.: Single-parameter model of vegetated aquatic flows. Water Resour. Res. 50(8), 6358–6369 (2014)

    Article  Google Scholar 

  • Blois, G., Smith, G.S., Best, J.L., Hardy, R.J., Lead, J.R.: Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV). Exp. Fluids. 53(1), 51–76 (2012)

    Article  Google Scholar 

  • Bolster, D., Méheust, Y., Le Borgne, T., Bouquain, J., Davy, P.: Modeling preasymptotic transport in flows with significant inertial and trap** effects–The importance of velocity correlations and a spatial Markov model. Adv. Water Resour. 70, 89–103 (2014)

    Article  Google Scholar 

  • Bottacin-Busolin, A.: Non-Fickian dispersion in open-channel flow over a porous bed. Water Resour. Res. 53(8), 7426–7456 (2017)

    Article  Google Scholar 

  • Bottacin-Busolin, A., Marion, A.: Combined role of advective pum** and mechanical dispersion on time scales of bed form–induced hyporheic exchange. Water Resour. Res. (2010). https://doi.org/10.1029/2009WR008892

    Article  Google Scholar 

  • Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., Valett, H.M.: The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Evol. Syst. 29(1), 59–81 (1998)

    Article  Google Scholar 

  • Calderer, A., Kang, S., Sotiropoulos, F.: Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. J. Comput. Phys. 277, 201–227 (2014)

    Article  Google Scholar 

  • Cardenas, M.B.: Three-dimensional vortices in single pores and their effects on transport. Geophys. Res. Lett. (2008). https://doi.org/10.1029/2008GL035343

    Article  Google Scholar 

  • Cardenas, M.B., Wilson, J.L.: Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour. Res. 43(8) (2007)

  • Chandler, I.D., Guymer, I., Pearson, J.M., Van Egmond, R.: Vertical variation of mixing within porous sediment beds below turbulent flows. Water Resour. Res. 52(5), 3493–3509 (2016)

    Article  Google Scholar 

  • Chen, C., Liu, W., Lin, C.H., Chen, Q.: Comparing the Markov chain model with the Eulerian and Lagrangian models for indoor transient particle transport simulations. Aerosol Sci. Technol. 49(10), 857–871 (2015)

    Article  Google Scholar 

  • Cheng, Z., Chauchat, J., Hsu, T.J., Calantoni, J.: Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow. Adv. Water Resour. 111, 435–451 (2018)

    Article  Google Scholar 

  • Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  Google Scholar 

  • Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., Weigand, B.: Transport of turbulence across permeable interface in a turbulent channel flow: interface-resolved direct numerical simulation. Transp. Porous Media 136(1), 165–189 (2021)

    Article  Google Scholar 

  • Cui, X., Yao, X., Wang, Z., Liu, M.: A hybrid wavelet-based adaptive immersed boundary finite-difference lattice Boltzmann method for two-dimensional fluid–structure interaction. J. Comput. Phys. 333, 24–48 (2017)

    Article  Google Scholar 

  • Das, S., Deen, N.G., Kuipers, J.A.M.: Multiscale modeling of fixed-bed reactors with porous (open-cell foam) non-spherical particles: Hydrodynamics. Chem. Eng. J. 334, 741–759 (2018)

    Article  Google Scholar 

  • De Lemos, M.J.: Turbulence in porous media: modeling and applications. Elsevier, Amsterdam (2012)

    Google Scholar 

  • De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  • Drummond, J.D., Covino, T.P., Aubeneau, A.F., Leong, D., Patil, S., Schumer, R., Packman, A.I.: Effects of solute breakthrough curve tail truncation on residence time estimates: a synthesis of solute tracer injection studies. J. Geophys. Res. Biogeosci. (2012). https://doi.org/10.1029/2012JG002019

    Article  Google Scholar 

  • Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)

    Article  Google Scholar 

  • Fang, H., Han, X., He, G., Dey, S.: Influence of permeable beds on hydraulically macro-rough flow. J. Fluid Mech. 847, 552–590 (2018)

    Article  Google Scholar 

  • Forslund, T.O., Larsson, I.S., Lycksam, H., Hellström, J.G.I., Lundström, T.S.: Non-Stokesian flow through ordered thin porous media imaged by tomographic-PIV. Exp. Fluids 62(3), 1–12 (2021)

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluid Fluid Dyn. 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  • Gosman, A. D., Loannides, E.: Aspects of computer simulation of liquid-fueled combustors. J Energy 7(6), 482–490 (1983)

    Article  Google Scholar 

  • Graham, D.I., James, P.W.: Turbulent dispersion of particles using eddy interaction models. Int. J. Multiph. Flow 22(1), 157–175 (1996)

    Article  Google Scholar 

  • He, G.J., Han, X., Fang, H.W., Reible, D., Huang, L.: Effects of roughness Reynolds number on scalar transfer mechanisms at the sediment-water interface. Water Resour. Res. 55(8), 6811–6824 (2019)

    Article  Google Scholar 

  • He, S., Yang, Z., Sotiropoulos, F., Shen, L.: Numerical simulation of interaction between multiphase flows and thin flexible structures. J. Comput. Phys. 448, 110691 (2021)

    Article  Google Scholar 

  • Hester, E.T., Young, K.I., Widdowson, M.A.: Mixing of surface and groundwater induced by riverbed dunes: implications for hyporheic zone definitions and pollutant reactions. Water Resour. Res. 49(9), 5221–5237 (2013)

    Article  Google Scholar 

  • Hester, E.T., Cardenas, M.B., Haggerty, R., Apte, S.V.: The importance and challenge of hyporheic mixing. Water Resour. Res. 53(5), 3565–3575 (2017)

    Article  Google Scholar 

  • Higashino, M., Clark, J.J., Stefan, H.G.: Pore water flow due to near-bed turbulence and associated solute transfer in a stream or lake sediment bed. Water Resour. Res. (2009). https://doi.org/10.1029/2008WR007374

    Article  Google Scholar 

  • Jiang, P.X., Fan, M.H., Si, G.S., Ren, Z.P.: Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int. J. Heat Mass Transf. 44(5), 1039–1051 (2001)

    Article  Google Scholar 

  • Joshi, A.S., Grew, K.N., Peracchio, A.A., Chiu, W.K.: Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. J. Power Sour 164(2), 631–638 (2007)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Spatial Markov model of anomalous transport through random lattice networks. Phys. Rev. Lett. 107(18), 180602 (2011)

    Article  Google Scholar 

  • Kang, P.K., Le Borgne, T., Dentz, M., Bour, O., Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51(2), 940–959 (2015)

    Article  Google Scholar 

  • Kang, P.K., Lee, W., Lee, S., Kim, A.S.: Origin of structural parameter inconsistency in forward osmosis models: a pore-scale CFD study. Desalination 421, 47–60 (2017)

    Article  Google Scholar 

  • Kang, P.K., Hyman, J.D., Han, W.S., Dentz, M.: Anomalous transport in three-dimensional discrete fracture networks: interplay between aperture heterogeneity and injection modes. Water Resour. Res. 56(11), e2020WR027378 (2020)

    Article  Google Scholar 

  • Kazemifar, F., Blois, G., Aybar, M., Calleja, P.P., Nerenberg, R., Sinha, S., Hardy, R.J., Best, J., Sambrook Smith, G.H., Christensen, K.T.: The effect of biofilms on turbulent flow over permeable beds. Water Resour. Res. 57(2), 26032 (2021)

    Article  Google Scholar 

  • Kim, J.S., Kang, P.K.: Anomalous transport through free-flow–porous media interface: Pore-scale simulation and predictive modeling. Adv. Water Resour. 135, 103467 (2020)

    Article  Google Scholar 

  • Kim, T., Blois, G., Best, J.L., Christensen, K.T.: Experimental study of turbulent flow over and within cubically packed walls of spheres: effects of topography, permeability and wall thickness. Int. J. Heat Fluid Flow 73, 16–29 (2018)

    Article  Google Scholar 

  • Kim, T., Blois, G., Best, J.L., Christensen, K.T.: Experimental evidence of amplitude modulation in permeable-wall turbulence. J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2019.1027

    Article  Google Scholar 

  • Kim, J.S., Seo, I.W., Baek, D., Kang, P.K.: Recirculating flow-induced anomalous transport in meandering open-channel flows. Adv. Water Resour. (2020). https://doi.org/10.1016/j.advwatres.2020.103603

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Carrera, J.: Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101(9), 090601 (2008)

    Article  Google Scholar 

  • Lee, S.H., Kang, P.K.: Three-dimensional vortex-induced reaction hot spots at flow intersections. Phys. Rev. Lett. 124(14), 144501 (2020)

    Article  Google Scholar 

  • Lee, A., Aubeneau, A.F., Cardenas, M.B.: The sensitivity of hyporheic exchange to fractal properties of riverbeds. Water Resour. Res. 56(5), 26560 (2020)

    Article  Google Scholar 

  • Leonardi, A., Pokrajac, D., Roman, F., Zanello, F., Armenio, V.: Surface and subsurface contributions to the build-up of forces on bed particles. J. Fluid Mech. 851, 558–572 (2018)

    Article  Google Scholar 

  • Li, Q., Pan, M., Zhou, Q., Dong, Y.: Turbulent drag modification in open channel flow over an anisotropic porous wall. Phys. Fluids 32(1), 015117 (2020)

    Article  Google Scholar 

  • Lian, Y.P., Dallmann, J., Sonin, B., Roche, K.R., Liu, W.K., Packman, A.I., Wagner, G.J.: Large eddy simulation of turbulent flow over and through a rough permeable bed. Comput. Fluids 180, 128–138 (2019)

    Article  Google Scholar 

  • Lilly, D.K.: A proposed modification of the germano subgrid-scale closure method. Phys. Fluid Fluid Dynam. 4(3), 633–635 (1992)

    Article  Google Scholar 

  • Manes, C., Pokrajac, D., McEwan, I., Nikora, V.: Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluid 21(12), 125109 (2009)

    Article  Google Scholar 

  • Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  Google Scholar 

  • Morales, V.L., Dentz, M., Willmann, M., Holzner, M.: Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44(18), 9361–9371 (2017)

    Article  Google Scholar 

  • Nagaoka, H., Ohgaki, S.: Mass transfer mechanism in a porous riverbed. Water Res. 24(4), 417–425 (1990)

    Article  Google Scholar 

  • Nepf, H., Ghisalberti, M., White, B., Murphy, E.: Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43(4), 4 (2007)

    Article  Google Scholar 

  • Papke, A., Battiato, I.: A reduced complexity model for dynamic similarity in obstructed shear flows. Geophys. Res. Lett. 40(15), 3888–3892 (2013)

    Article  Google Scholar 

  • Parasyris, A., Brady, C., Das, D.B., Discacciati, M.: Computational modeling of coupled free and porous media flow for membrane-based filtration systems: a review. J. Appl. Membrane Sci. Techno. (2019). https://doi.org/10.11113/amst.v23n3.158

    Article  Google Scholar 

  • Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Media 78(3), 367 (2009)

    Article  Google Scholar 

  • Prinos, P., Sofialidis, D., Keramaris, E.: Turbulent flow over and within a porous bed. J. Hydraul. Eng. 129(9), 720–733 (2003)

    Article  Google Scholar 

  • Reidenbach, M.A., Limm, M., Hondzo, M., Stacey, M.T.: Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface. Water Resour. Res. (2010). https://doi.org/10.1029/2009WR008248

    Article  Google Scholar 

  • Roche, K.R., Blois, G., Best, J.L., Christensen, K.T., Aubeneau, A.F., Packman, A.I.: Turbulence links momentum and solute exchange in coarse-grained streambeds. Water Resour. Res. 54(5), 3225–3242 (2018)

    Article  Google Scholar 

  • Roche, K.R., Li, A., Bolster, D., Wagner, G.J., Packman, A.I.: Effects of turbulent hyporheic mixing on reach-scale transport. Water Resour. Res. 55(5), 3780–3795 (2019)

    Article  Google Scholar 

  • Rokhforouz, M.R., Amiri, H.A.: Effects of grain size and shape distribution on pore-scale numerical simulation of two-phase flow in a heterogeneous porous medium. Adv. Water Resour. 124, 84–95 (2019)

    Article  Google Scholar 

  • Rousseau, G., Ancey, C.: Scanning PIV of turbulent flows over and through rough porous beds using refractive index matching. Exp. Fluids. 61(8), 1–24 (2020)

    Article  Google Scholar 

  • Scalo, C., Piomelli, U., Boegman, L.: Large-eddy simulation of oxygen transfer to organic sediment beds. J. Geophys. Res. Oceans (2012). https://doi.org/10.1029/2011JC007289

    Article  Google Scholar 

  • Shams, M., Ahmadi, G., Smith, D.H.: Computational modeling of flow and sediment transport and deposition in meandering rivers. Adv. Water Resour. 25(6), 689–699 (2002)

    Article  Google Scholar 

  • Shen, G., Yuan, J., Phanikumar, M.S.: Direct numerical simulations of turbulence and hyporheic mixing near sediment-water interfaces. J. Fluid Mech. 892, A20 (2020)

    Article  Google Scholar 

  • Sherman, T., Roche, K.R., Richter, D.H., Packman, A.I., Bolster, D.: A dual domain stochastic lagrangian model for predicting transport in open channels with hyporheic exchange. Adv. Water Resour. 125, 57–67 (2019)

    Article  Google Scholar 

  • Smagorinsky, J.: General circulation experiments with the primitive equations: I the basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  • Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  • Stoesser T., Frohlich, J., Rodi, W.: Turbulent open-channel flow over a permeable bed. In: Proceedings of 32th IAHR Congress vol. 32(1), pp. 189 (2007)

  • Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)

    Article  Google Scholar 

  • Thielicke, W., Stamhuis, E.: PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. (2014). https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  • Voermans, J.J., Ghisalberti, M., Ivey, G.N.: The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 824, 413–437 (2017)

    Article  Google Scholar 

  • Weishaupt, K., Joekar-Niasar, V., Helmig, R.: An efficient coupling of free flow and porous media flow using the pore-network modeling approach. J. Comput. Phys. X 1, 100011 (2019)

    Google Scholar 

  • Wood, B.D.: Inertial effects in dispersion in porous media. Water Resour. Res. (2007). https://doi.org/10.1029/2006WR005790

    Article  Google Scholar 

  • Wood, B.D., He, X., Apte, S.V.: Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech. 52, 171–203 (2020)

    Article  Google Scholar 

  • Worthington, S.R., Soley, R.W.: Identifying turbulent flow in carbonate aquifers. J. Hydrol. 552, 70–80 (2017)

    Article  Google Scholar 

  • Yang, G., Weigand, B., Terzis, A., Weishaupt, K., Helmig, R.: Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures. Transp. Porous Media 122(1), 145–167 (2018)

    Article  Google Scholar 

  • Yang, G., Coltman, E., Weishaupt, K., Terzis, A., Helmig, R., Weigand, B.: On the Beavers-Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transp. Porous Media 128(2), 431–457 (2019)

    Article  Google Scholar 

  • Yoon, S., Kang, P.K.: Roughness, inertia, and diffusion effects on anomalous transport in rough channel flows. Phys. Rev. Fluids 6(1), 014502 (2021)

    Article  Google Scholar 

Download references

Funding

We thank the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for computational resources and support. J. S. K. and P. K. K. acknowledge a grant from Korea Environment Industry and Technology Institute (KEITI) through Subsurface Environmental Management (SEM) Project (2018002440003), funded by the Korea Ministry of Environment (MOE) and also acknowledge Grant-in-Aid funds through the Office of the vice president for research at the University of Minnesota. J. S. K. and I. W. S. acknowledge the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 19DPIW-C153746-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Kang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Kang, P.K., He, S. et al. Pore-Scale Flow Effects on Solute Transport in Turbulent Channel Flows Over Porous Media. Transp Porous Med 146, 223–248 (2023). https://doi.org/10.1007/s11242-021-01736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01736-6

Keywords

Navigation