Log in

The Impacts of Pore Structure and Relative Humidity on Gas Transport in Shale: A Numerical Study by the Image-Based Multi-scale Pore Network Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Due to the multi-scale pore size and complex gas-bound water distribution, it is challenging to accurately predict gas transport property in shale. Given the known heterogeneities, single-resolution pore-scale imaging is not reliable for representative pore structure characterization. In this study, the image-based shale multi-scale pore network model (MPNM) is proposed and the impacts of pore structure and relative humidity (RH) on gas transport are analyzed in detail. 3D binary images are constructed by the multiple-point statistics method from a section of low-resolution SEM image which covers the large-scale pore structure and fine-scale SEM images with the same physical size at high resolution. The maximal ball fitting method is applied to extract large-scale pore network model (LPNM) and fine-scale pore network models (FPNMs) from the 3D binary images, respectively. MPNM is obtained by merging the LPNM and FPNMs based on the proposed procedure. The confined gas-bound water distribution at different RH is calculated considering the disjoining pressure resulting from van der Waals force, electric double-layer interactions and structural force. Gas slippage in irregular pores is considered for gas transport. Pore structure parameters and gas permeabilities are calculated based on the MPNM, LPNM and FPNMs. Study results indicate that the gas permeability of MPNM is more close to the laboratory pressure pulse decay measured gas permeability of studied sample. Gas permeability decreases with the increasing RH and drops to zero at average pore radius less than 12 nm and RH larger than 0.7.

Article Highlights

  • The image-based shale multi scale pore network model (MPNM) is proposed based on low resolution and high resolution SEM images.

  • Permeability of MPNM is more close to the laboratory measured permeability compared with that of fine scale and large scale pore network.

  • Gas permeability drops to zero at average pore radius less than 12 nm and relative humidity larger than 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

The data used in figures can be found at https://doi.org/10.6084/m9.figshare.14502897.v1.

Abbreviations

A :

Cross section area given pore or throat (m2)

A 11 :

Hamaker constant for solid phase

A 22 :

Hamaker constant for gas phase

A 33 :

Hamaker constant for water phase

A 132 :

Nonretarded Hamaker constant representing solid and gas interacting across water film

A pnm :

PNM cross section area

\(A_{tri\_eff}^{{}}\) :

Effective transport area considering the water film thickness (m2)

e :

Electron charge

f cir(Kn cir):

Flow condition function

f tri(G,Kn tri):

Flow condition function in irregular triangle pore

g :

Gas flow conductance (m3 s1 Pa1)

g Darcy :

Gas flow conductance at Darcy flow case (m3 s1 Pa1)

g ij :

Gas flow conductance between pore i and pore j (m3 s1 Pa1)

g i, g j, g t :

Gas flow conductance of pore i, pore j and its connected throat (m3 s1 Pa1)

G :

Shape factor, dimensionless

h :

Water film thickness (m)

h p :

Planck’s constants (J/s)

h c :

Critical water film thickness (m)

k B :

Boltzmann constant (J K1)

k :

Gas permeability at certain RH (m2)

k dry :

Gas permeability at dry condition (m2)

k Darcy :

Gas permeability at non-slip flow condition (m2)

Kn cir :

Knudsen number in circular pore

Kn squ :

Knudsen number in square pore

K str :

Magnitude of the structural forces

l :

Pore length (m)

L i, L j, L t :

Length of pore i, pore j and connected throat (m)

L thi :

Maximum throat length in the group of Ts of each region (Ω1, Ω1,…, Ω9) (m)

L t :

The throat length of the resultant throat connecting Pli and Ps (m)

L vt :

Virtual throat length (m)

M w :

Gas molar mass (g mol1)

n :

Ion concentration (mol/m3)

N inlet :

Total number of inlet pores

N i (r t ) :

Throat radius of FPNM i (m)

N i(L t):

Throat length distribution of FPNM i

P e :

Excess pressure (Pa)

P s :

Pores on FPNMs that are connected with Pol

p s :

Saturated vapor pressure (Pa)

P d :

Perimeter of given pore or throat (m)

P li :

Corresponding large-scale pores in each region Ωi

P ol :

The pores with pore size larger than the corresponding rthi in each FPNM

Q:

Gas flux in single pore (m3 s1)

r :

Pore radius (m)

R :

Universal gas constant, dimensionless

RH:

Relative humidity, dimensionless

RHc :

Critical relative humidity, dimensionless

r t :

The throat radius of the resultant throat connecting Pli and Ps (m)

r eff :

Effective gas transport radius considering the water film thickness (m)

r tri_eff :

Effective inscribed radius in triangle pore considering the water film thickness (m)

r thi :

Large-scale threshold pore size of each region (m)

r vt :

Virtual throat radius (m)

T :

Temperature (K)

T c :

Water critical temperature (K)

T s :

Throats on FPNMs that are connected with Pol

w eff :

Effective side length of the square considering the water film thickness (m)

Y e :

Dimensionless electrostatic potential

z :

Ion valence, dimensionless

αcir :

Rarefaction coefficient, dimensionless

α duct :

Rarefaction coefficient in square pore, dimensionless

β 1,2,3 :

Corner half angle of each corner

β :

Slip coefficient, dimensionless

μ g :

Gas viscosity (Pa s)

ν e :

Primary electronic absorption frequency in the ultraviolet region

v m :

Water molar volume (m3/mol)

Ωi :

Region number according to spatial range of each FPNM, dimensionless

γ :

Interfacial tension (N/m)

Π(h):

Disjoining pressure (Pa)

Πvd(h):

Van der Waals force (Pa)

Πel(h):

Electrostatic force (Pa)

Πstr(h):

Structural force (Pa)

Ψ e :

Electrostatic potential (V)

ξ :

Gas mean free path (m)

\(\chi\) :

Inverse of Debye length (m1)

ε :

Dielectric constants

λ str :

Characteristic length of the structural force (m)

References

  • Achtermann, H.J., Hong, J., Wagner, W., Pruss, A.: Refractive index and density isotherms for methane from 273 to 373 K and at pressures up to 34 MPa. J. Chem. Eng. Data 37(4), 414–418 (1992)

    Article  Google Scholar 

  • Bai, B., Elgmati, M., Zhang, H., Wei, M.: Rock characterization of Fayetteville shale gas plays. Fuel 105, 645–652 (2013)

    Article  Google Scholar 

  • Bauer, D., Youssef, S., Fleury, M., Bekri, S., Rosenberg, E., Vizika, O.: Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed microtomography. Transp. Porous Med. 94(2), 505–524 (2012)

    Article  Google Scholar 

  • Berg, J.C.: An introduction to interfaces & colloids: the bridge to nanoscience. World Scientific. (2010)

  • Beskok, A., Karniadakis, G.E.: Report: a model for flows in channels, pipes, and ducts at micro and nano scales. NANOSC MICROSC THERM 3(1), 43–77 (1999)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Bultreys, T., Van Hoorebeke, L., Cnudde, V.: Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Adv. Water Resour. 78, 36–49 (2015)

    Article  Google Scholar 

  • Chalmers, G.R., Bustin, R.M., Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the barnett, woodford, haynesville, marcellus, and doig unitscharacterization of gas shale pore systems. Am. Assoc. Pet. Geol. Bull. 96(6), 1099–1119 (2012)

    Google Scholar 

  • Chandler, M.R., Mecklenburgh, J., Rutter, E., Lee, P.: Fluid injection experiments in shale at elevated confining pressures: Determination of flaw sizes from mechanical experiments. J. Geophys. Res. Solid Earth 124(6), 5500–5520 (2019)

    Article  Google Scholar 

  • Chen, C.: Multiscale imaging, modeling, and principal component analysis of gas transport in shale reservoirs. Fuel 182, 761–770 (2016)

    Article  Google Scholar 

  • Chen, L., Kang, Q., Dai, Z., Viswanathan, H.S., Tao, W.: Permeability prediction of shale matrix reconstructed using the elementary building block model. Fuel 160, 346–356 (2015a)

    Article  Google Scholar 

  • Chen, L., Zhang, L., Kang, Q., Viswanathan, H.S., Yao, J., Tao, W.: Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity. Sci Rep 5(1), 1–8 (2015b)

    Google Scholar 

  • Churaev, N., Derjaguin, B.: Inclusion of structural forces in the theory of stability of colloids and films. J Colloid Interface Sci. 103(2), 542–553 (1985)

  • Deirieh, A., Casey, B., Germaine, J.T., Xu, G.: The integration of magnifications: a novel approach to obtain representative information about the pore space of mudrocks from SEM images. Appl. Clay Sci. 154, 73–82 (2018)

    Article  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)

    Article  Google Scholar 

  • Gregory, J.: Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 51(1), 44–51 (1975)

    Article  Google Scholar 

  • Heath, J.E., Bryan, C.R., Matteo, E.N., Dewers, T.A., Wang, Y., Sallaberry, C.J.: Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide. Water Resour. Res. 50(3), 2718–2731 (2014)

    Article  Google Scholar 

  • Ilgen, A.G., Heath, J.E., Akkutlu, I.Y., Bryndzia, L.T., Cole, D.R., Kharaka, Y.K., Kneafsey, T.J., Milliken, K.L., Pyrak-Nolte, L.J., Suarez-Rivera, R.: Shales at all scales: exploring coupled processes in mudrocks. Earth-Sci. Rev. 166, 132–152 (2017)

    Article  Google Scholar 

  • Israelachvili, J.N. : Intermolecular and surface forces. Academic press. (2015)

  • Jatukaran, A., Zhong, J., Abedini, A., Sherbatian, A., Zhao, Y., **, Z., Mostowfi, F., Sinton, D.: Natural gas vaporization in a nanoscale throat connected model of shale: multi-scale, multi-component and multi-phase. Lab Chip 19(2), 272–280 (2019)

    Article  Google Scholar 

  • Jiang, Z., Van Dijke, M.I.J., Sorbie, K.S., Couples, G.D.: Representation of multiscale heterogeneity via multiscale pore networks. Water Resour. Res. 49(9), 5437–5449 (2013)

    Article  Google Scholar 

  • Karniadakis, G., Beskok, A., Aluru, N.: Microflows and nanoflows: fundamentals and simulation. Springer Science & Business Media (2006).

  • Kelly, S., El-Sobky, H., Torres-Verdín, C., Balhoff, M.T.: Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 95, 302–316 (2016)

    Article  Google Scholar 

  • Lee, A.L., Gonzalez, M.H., Eakin, B.E.: The viscosity of natural gases. J. Pet. Technol. 18(08), 997–1001 (1966)

    Article  Google Scholar 

  • Lemmens, H., Richards, D.: Multiscale imaging of shale samples in the scanning electron microscope. Electron Microsc. Shale Hydrocarb. Reserv. AAPG Mem. 102, 27–36 (2013)

  • Li, J., Li, X., Wang, X., Li, Y., Wu, K., Shi, J., Yang, L., Feng, D., Zhang, TYu., P. : Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 159, 135–154 (2016)

    Article  Google Scholar 

  • Liu, B., Qi, C., Zhao, X., Teng, G., Zhao, L., Zheng, H., Shi, J.: Nanoscale two-phase flow of methane and water in shale inorganic matrix. J. Phys. Chem. C. 122(46), 26671–26679 (2018)

    Article  Google Scholar 

  • Loucks, R.G., Reed, R.M., Ruppel, S.C., Hammes, U.: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. Am. Assoc. Pet. Geol. Bull. 96(6), 1071–1098 (2012)

    Google Scholar 

  • Ma, J., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.: A pore network model for simulating non-ideal gas flow in micro-and nano-porous materials. Fuel 116, 498–508 (2014)

    Article  Google Scholar 

  • Ma, L., Taylor, K.G., Lee, P.D., Dobson, K.J., Dowey, P.J., Courtois, L.: Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone: the carboniferous bowland shale. North. Engl. Mar. Pet. Geol. 72, 193–205 (2016)

    Article  Google Scholar 

  • Mahmoud, M.: Development of a new correlation of gas compressibility factor (Z-factor) for high pressure gas reservoirs. J. Energy Resour. Technol. 136(1), 12903 (2014)

    Article  Google Scholar 

  • Mattia, D., Starov, V., Semenov, S.: Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels. J. Colloid Interface Sci. 384(1), 149–156 (2012)

    Article  Google Scholar 

  • Mehmani, A., Prodanović, M.: The effect of microporosity on transport properties in porous media. Adv Water Resour 63, 104–119 (2014)

    Article  Google Scholar 

  • Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Med. 99(2), 377–390 (2013)

    Article  Google Scholar 

  • Milliken, K.L., Rudnicki, M., Awwiller, D.N., Zhang, T.: Organic matter–hosted pore system, Marcellus formation (Devonian). Pennsylvania. Am Assoc Pet Geol Bull. 97(2), 177–200 (2013)

    Google Scholar 

  • Nelson, P.H.: Pore-throat sizes in sandstones, tight sandstones, and shales. Am. Assoc. Pet. Geol. Bull. 93(3), 329–340 (2009)

    Google Scholar 

  • Okabe, H., Blunt, M.J.: Pore space reconstruction using multiple-point statistics. J. Pet. Sci. Eng. 46(1–2), 121–137 (2005)

    Article  Google Scholar 

  • Okabe, H., & Blunt, M. J. (2007). Pore space reconstruction of vuggy carbonates using microtomography and multiple‐point statistics. Water Resour. Res. 43(12).

  • Oren, P.E., Bakke, S., Arntzen, O.J.: Extending predictive capabilities to network models. SPE J. 3(04), 324–336 (1998)

    Article  Google Scholar 

  • Pak, T., Butler, I.B., Geiger, S., van Dijke, M.I., Jiang, Z., Surmas, R.: Multiscale pore-network representation of heterogeneous carbonate rocks. Water Resour. Res. 52(7), 5433–5441 (2016)

    Article  Google Scholar 

  • Prodanović, M., Mehmani, A., Sheppard, A.P.: Imaged-based multiscale network modelling of microporosity in carbonates. Geol. Soc. Spec. Publ. 406(1), 95–113 (2015)

    Article  Google Scholar 

  • Qu, Z.G., Yin, Y., Wang, H., Zhang, J.F.: Pore-scale investigation on coupled diffusion mechanisms of free and adsorbed gases in nanoporous organic matter. Fuel 260, 116423 (2020)

    Article  Google Scholar 

  • Saif, T., Lin, Q., Butcher, A.R., Bijeljic, B., Blunt, M.J.: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM. MAPS Mineral. FIB-SEM. Appl. Energy 202, 628–647 (2017)

    Google Scholar 

  • Semnani, S.J., Borja, R.I.: Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech. 12(6), 1193–1205 (2017)

    Article  Google Scholar 

  • Shen, W., Li, X., Lu, X., Guo, W., Zhou, S., Wan, Y.: Experimental study and isotherm models of water vapor adsorption in shale rocks. J. Nat. Gas Sci. Eng. 52, 484–491 (2018)

    Article  Google Scholar 

  • Song, W., Yao, J., Li, Y., Sun, H., Zhang, L., Yang, Y., Zhao, J., Sui, H.: Apparent gas permeability in an organic-rich shale reservoir. Fuel 181, 973–984 (2016)

    Article  Google Scholar 

  • Song, W., Yao, J., Li, Y., Yang, Y., Sun, H.: New pore size distribution calculation model based on chord length and digital image. J. Nat. Gas Sci. Eng. 48, 111–118 (2017)

    Article  Google Scholar 

  • Song, W., Yin, Y., Landry, C., Prodanović, M., Qu, Z., Yao, J.: A local-effective-viscosity multi-relaxation-time lattice Boltzmann-pore network coupling model for gas transport in complex nanoporous media. SPE J. 26(1), 461–481 (2021)

    Article  Google Scholar 

  • Suhrer, M., Toelke, J., Diaz, E., Grader, A., Walls, J., Restrepo, D.P., Cespedes, S.: Computed two-phase relative permeability using digital rock physics in a shale formation. SCA 2013(37), 1–12 (2013)

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M.: Multiscale and multiresolution modeling of shales and their flow and morphological properties. Sci. Rep. 5(1), 1–11 (2015)

    Article  Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M., Piri, M.: Multiscale study for stochastic characterization of shale samples. Adv Water Resour 89, 91–103 (2016)

    Article  Google Scholar 

  • Tokunaga, T.K.: DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs. Langmuir 28(21), 8001–8009 (2012)

    Article  Google Scholar 

  • Uhlig, H.H., Keyes, F.G.: The dependence of the dielectric constants of gases on temperature and density. J. Chem. Phys. 1(2), 155–159 (1933)

    Article  Google Scholar 

  • Valvatne, P. H., & Blunt, M. J.: Predictive pore‐scale modeling of two‐phase flow in mixed wet media. Water Resour. Res 40(7) (2004)

  • Vega, C., De Miguel, E.: Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126(15), 154707 (2007)

    Article  Google Scholar 

  • Walls, J.D., Sinclair, S.W.: Eagle Ford shale reservoir properties from digital rock physics. First Break 29(6), 97–101 (2011)

    Article  Google Scholar 

  • Wang, J., Luo, H., Liu, H., Cao, F., Li, Z., Sepehrnoori, K.: An integrative model to simulate gas transport and production coupled with gas adsorption, non-Darcy flow, surface diffusion, and stress dependence in organic-shale reservoirs. SPE J. 22(01), 244–264 (2018a)

    Article  Google Scholar 

  • Wang, Y., Rahman, S.S., Arns, C.H.: Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm. Phys. A 493, 177–188 (2018b)

    Article  Google Scholar 

  • Wu, K., Van Dijke, M.I., Couples, G.D., Jiang, Z., Ma, J., Sorbie, K.S., Crawford, J., Young, I., Zhang, X.: 3D stochastic modelling of heterogeneous porous media–applications to reservoir rocks. Transp. Porous Med. 65(3), 443–467 (2006)

    Article  Google Scholar 

  • Wu, T., Li, X., Zhao, J., Zhang, D.: Multiscale pore structure and its effect on gas transport in organic-rich shale. Water Resour. Res. 53(7), 5438–5450 (2017)

    Article  Google Scholar 

  • Wu, K., Nunan, N., Crawford, J.W., Young, I.M., Ritz, K.: An efficient Markov chain model for the simulation of heterogeneous soil structure. Soil Sci. Soc. Am. J. 68(2), 346–351 (2004)

    Article  Google Scholar 

  • Wu, Y., Tahmasebi, P., Yu, H., Lin, C., Wu, H., Dong, C.: Pore‐Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation. J. Geophys. Res. Solid Earth 125(1), e2019JB018309 (2020)

  • Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S., Song, W.: New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J. Nat. Gas Sci. Eng. 27, 496–503 (2015)

    Article  Google Scholar 

  • Yao, J., Song, W., Wang, D., Sun, H., Li, Y.: Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media. Int. J. Heat Mass Transf. 141, 156–167 (2019)

    Article  Google Scholar 

  • Yi, Z., Lin, M., Jiang, W., Zhang, Z., Li, H., Gao, J.: Pore network extraction from pore space images of various porous media systems. Water Resour. Res. 53(4), 3424–3445 (2017)

    Article  Google Scholar 

  • Yin, Y., Qu, Z.G., Zhang, J.F.: Pore-scale prediction of the effective mass diffusivity of heterogeneous shale structure using the lattice Boltzmann method. Int. J. Heat Mass Transf. 133, 976–985 (2019)

    Article  Google Scholar 

  • Zhao, J., Yao, J., Zhang, M., Zhang, L., Yang, Y., Sun, H., An, S., Li, A.: Study of gas flow characteristics in tight porous media with a microscale lattice Boltzmann model. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  • Zhong, J., Abedini, A., Xu, L., Xu, Y., Qi, Z., Mostowfi, F., Sinton, D.: Nanomodel visualization of fluid injections in tight formations. Nanoscale 10(46), 21994–22002 (2018)

    Article  Google Scholar 

  • Zhou, J., **, Z., Luo, K.H.: Effects of moisture contents on shale gas recovery and CO2 sequestration. Langmuir 35(26), 8716–8725 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Wenhui Song acknowledges the Fundamental Research Funds for the Central Universities (No. 20CX06088A) and Qingdao Postdoctoral Applied Research Project (qdyy20200083).

Funding

This study was funded by National Natural Science Foundation of China (No. 52034010), Fundamental Research Funds for the Central Universities (No. 20CX06088A), Qingdao Postdoctoral Applied Research Project (qdyy20200083) and National Natural Science Foundation (52034010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yao.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1579 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Yao, J., Zhang, K. et al. The Impacts of Pore Structure and Relative Humidity on Gas Transport in Shale: A Numerical Study by the Image-Based Multi-scale Pore Network Model. Transp Porous Med 144, 229–253 (2022). https://doi.org/10.1007/s11242-021-01663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01663-6

Keywords

Navigation