Log in

Mechanistic Model for Nanoparticle Retention in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

With sizes larger than molecules but smaller than colloidal particles, nanoparticles exhibit unique transport properties in porous media. They can easily pass through typical pore throats in reservoir formations with micron diameters, but may get retained by physicochemical interaction with the pore walls. Based on detailed analysis of nanoparticle retention data from an extensive series of transport experiments, we examine the limitations of classical models of transport and interaction with a stationary phase. Some features of nanoparticle transport and retention are similar to those of adsorbing/desorbing solutes, while others are similar to those of depositing colloids. But neither solute sorption nor colloid filtration alone can explain all nanoparticle retention features, and of particular importance for subsurface applications, neither model can predict the effect of changing flow conditions on nanoparticle retention. The model that accounts for most observations is an independent two-site model which postulates physically independent sites of fixed capacity: one for reversible attachment and the other for irreversible attachment. We validate the model against five distinctly different groups of experimental data from the literature, through a rigorous approach of obtaining the model parameters from one experiment and blind testing against data from other experiments when experimental conditions vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartelds, D.A.: The influence of inaccessible and excluded pore volume on polymer flooding. Thesis, Delft University of Technology (1998)

  • Benamar, A., Ahfir, N.D., Wang, H.Q., Alem, A.: Particle transport in a saturated porous medium: pore structure effects. C. R. Geosci. 339, 674–681 (2007)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38, 1327–1338 (2002)

    Article  Google Scholar 

  • Caldelas, F.M.: Experimental parameter analysis of nanoparticle retention in porous media. M.S. Thesis, The University of Texas at Austin (2010)

  • Cheraghian, G., Hemmati, M., Masihi, M., Bazgir, S.: An experimental investigation of the enhanced oil recovery and improved performance of drilling fluids using titanium dioxide and fumed silica nanoparticles. J. Nanostruct. Chem. 3, 78 (2013)

    Article  Google Scholar 

  • Cortis, A., Harter, T., Hou, L.L., Atwill, E.R., Packman, A.I., Green, P.G.: Transport of cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour. Res. (2006). doi:10.1029/2006WR004897

    Google Scholar 

  • Cullen, E., O’Carroll, D.M., Yanful, E.K., Sleep, B.: Simulation of the subsurface mobility of carbon nanoparticles at the field scale. Adv. Water Resour. 33, 361–371 (2010)

    Article  Google Scholar 

  • Espinosa, D., Caldelas, F., Johnston, K., Bryant, S.L., Huh, C.: Nanoparticle-stabilized supercritical \(\text{CO}_{2}\) foams for potential mobility control applications. In: SPE 129925 presented at SPE Improved Oil Recovery Symposium, Tulsa, OK (2010)

  • Grolimund, D., Borkovec, M., Barmettler, K., Sticher, H.: Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ. Sci. Technol. 30, 3118–3123 (1996)

    Article  Google Scholar 

  • He, F., Zhang, M., Qian, T., Zhao, D.: Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 334, 96–102 (2009)

    Article  Google Scholar 

  • Jaisi, D.P., Saleh, N.B., Blake, R.E., Elimelech, M.: Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ. Sci. Technol. 42, 8317–8323 (2008)

    Article  Google Scholar 

  • Jeong, S.W., Kim, S.D.: Aggregation and transport of copper oxide nanoparticles in porous media. J. Environ. Monit. 11, 1595–1600 (2009)

    Article  Google Scholar 

  • Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801–812 (1995)

  • Kapusta, S., Balzano, L., Riele, P.T.: Nanotechnology applications in oil and gas exploration and production. In: IPTC 15152 presented at International Petroleum Technology Conference. Bangkok, Thailand (2011)

  • Lecoanet, H., Bottero, J., Wiesner, M.: Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 38, 5164–5169 (2004)

    Article  Google Scholar 

  • Li, Y., Wang, Y., Pennell, K.D., Abriola, L.M.: Investigation of the transport and deposition of fullerene (\(\text{ C }_{60}\)) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 42, 7174–7180 (2008)

    Article  Google Scholar 

  • Liu, X., O’Carroll, D.M., Petersen, E.J., Huang, Q., Anderson, C.L.: Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 43, 8153–8158 (2009)

    Article  Google Scholar 

  • McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22, 1901–1921 (1986)

    Article  Google Scholar 

  • Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: Predicting colloid transport through saturated porous media: a critical review. Water Resour. Res. 51, 6804–6845 (2015). doi:10.1002/2015WR017318

    Article  Google Scholar 

  • Murphy, M.J.: Experimental analysis of electrostatic and hydrokinetic forces affecting nanoparticle retention in porous media. M.S. Thesis, The University of Texas at Austin (2012)

  • Naftaly, A., Edery, Y., Dror, I., Berkowitz, B.: Visualization and analysis of nanoparticle transport and ageing in reactive porous media. J. Hazard. Mater. 299, 513–519 (2015)

    Article  Google Scholar 

  • Prigiobbe, V., Hesse, M.A., Bryant, S.L.: Fast strontium transport induced by hydrodynamic dispersion and pH-dependent sorption. Geophys. Res. Lett. 39, L18401 (2012)

    Article  Google Scholar 

  • Ryoo, S., Rahmani, A.R., Yoon, K.Y., Prodanović, M., Kotsmar, C., Milner, T.E., Johnston, K.P., Bryant, S.L., Huh, C.: Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. J. Petrol. Sci. Eng. 81, 129–144 (2012)

    Article  Google Scholar 

  • Sagee, O., Dror, I., Berkowitz, B.: Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88(5), 670–675 (2012)

    Article  Google Scholar 

  • Saleh, N., Kim, H., Phenrat, T., Matyjaszewski, K., Tilton, R.D., Lowrey, G.V.: Ionic strength and composition affect the mobility of surface-modified \(\text{ Fe }^{0}\) nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 42, 3349–3355 (2008)

    Article  Google Scholar 

  • ShamsiJazeyi, H., Miller, C.A., Wong, M.S., Tour, J.M., Verduzco, R.: Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131, 40576 (2014)

    Article  Google Scholar 

  • Sorbie, K.S.: Polymer-Improved Oil Recovery. Springer, New York (1991)

    Book  Google Scholar 

  • Tiraferri, A., Sethi, R.: Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 11, 635–645 (2009)

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration on saturated porous media. Environ. Sci. Technol. 38, 529–536 (2004)

    Article  Google Scholar 

  • Wang, Y., Li, Y., Fortner, J.D., Hughes, J.B., Abriola, L.M., Pennell, K.D.: Transport and retention of nanoscale \(\text{ C }_{60}\) aggregates in water-saturated porous media. Environ. Sci. Technol. 42, 3588–3594 (2008)

    Article  Google Scholar 

  • Yao, K.M., Habibian, M.T., O’Melia, C.R.: Water and wastewater filtration: concepts and applications. Environ. Sci. Technol. 5, 1105–1112 (1971)

    Article  Google Scholar 

  • Yu, H.: Transport and retention of surface-modified nanoparticles in sedimentary rocks. PhD Dissertation, The University of Texas at Austin (2012)

  • Yu, H., Yoon, K.Y., Neilson, B.M., Bagaria, H.G., Worthen, A.J., Lee, J.H., Cheng, V., Bielawski, C.W., Johnston, K.P., Bryant, S.L., Huh, C.: Transport and retention of aqueous dispersions of superparamagnetic nanoparticles in sandstone. J. Petrol. Sci. Eng. 116, 115–123 (2014)

    Article  Google Scholar 

  • Zhang, T.: Modeling of nanoparticle transport in porous media. PhD Dissertation, The University of Texas at Austin (2012)

  • Zhang, T., Davidson, D., Bryant, S.L., Huh, C.: Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. In: SPE 129885 presented at SPE Improved Oil Recovery Symposium, Tulsa, OK (2010)

  • Zhang, T., Roberts, M.R., Bryant, S.L., Huh, C.: Foams and emulsions stabilized with nanoparticles for potential conformance control applications. In: SPE 121744 presented at SPE International Symposium on Oilfield Chemistry. The Woodlands, TX (2009)

  • Zhang, T., Murphy, M.J., Yu, H., Bagaria, H.G., Yoon, K.Y., Neilson, B.M., Bielawski, C.W., Johnston, K.P., Huh, C., Bryant, S.L.: Investigation of nanoparticle adsorption during transport in porous media. SPE J. 20:04, SPE-166346-PA (2015)

  • Zou, Y., Zheng, W.: Modeling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns. Environ. Sci. Technol. 47, 5185–5192 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Advanced Energy Consortium. SB holds the Canada Excellence Research Chair in Materials Engineering for Unconventional Oil Reservoirs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Murphy, M., Yu, H. et al. Mechanistic Model for Nanoparticle Retention in Porous Media. Transp Porous Med 115, 387–406 (2016). https://doi.org/10.1007/s11242-016-0711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0711-1

Keywords

Navigation