Log in

Hairy root cultures as a multitask platform for green biotechnology

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Hairy root cultures serve as a useful tool in the experiments aiming to understand plant biology (e.g. functional analysis of gene function) which affects their use in biotechnology. Due to their numerous valuable features hairy root cultures provide an economic yet secure platform to produce active biomolecules. Hence, these cultures are mainly exploited to produce secondary metabolites or recombinant proteins for pharmaceutical or industrial applications. Moreover, numerous studies have shown that the discussed cultures are a promising platform for phytoremediation and thus for environmental restoration. This paper is a brief summary of the main achievements in the application of hairy root cultures.

Key message

Hairy root cultures are versatile platform with multifarious applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi BH, Stiles AR, Saxena PK, Liu CZ (2012) Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Appl Biochem Biotechnol 168(7):2057–2066

    Article  CAS  PubMed  Google Scholar 

  • Akhgari A, Laakso I, Maaheimo H, Choi YH, Seppänen-Laakso T, Oksman-Caldentey KM, Rischer H (2019) Methyljasmonate elicitation increases terpenoid indole alkaloid accumulation in Rhazya stricta hairy root cultures. Plants 8:534. https://doi.org/10.3390/plants8120534

    Article  CAS  PubMed Central  Google Scholar 

  • Alsoufi ASM, Paczkowski C, Długosz M, Szakiel A (2019) Influence of selected abiotic factors on triterpenoid biosynthesis and saponin secretion in Marigold (calendula offcinalis L.) in vitro hairy root cultures. Molecules 24:2907. https://doi.org/10.3390/molecules24162907

    Article  CAS  PubMed Central  Google Scholar 

  • Alvarez MA (2014) The Antibody 14D9 as an experimental model for molecular farming. Plant biotechnology for health. Springer, Cham. https://doi.org/10.1007/978-3-319-05771-2_7

    Chapter  Google Scholar 

  • Amani S, Mohebodini M, Shahram Khademvatan S, Jafaric M (2020) Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. J Sci Food Agric 100(5):2185–2197. https://doi.org/10.1002/jsfa.10243

    Article  CAS  PubMed  Google Scholar 

  • Anghel R, Jitaru D, Badescu L, Ciocoiu M, Badescu M (2014) The Cytotoxic effect of cecropin A and cecropin B on the MDA-MB-231 and M14K tumour cell lines. J Biomed Sci Eng 7:504–515. https://doi.org/10.4236/jbise.2014.78052

    Article  CAS  Google Scholar 

  • Bahmani H, Maroufi A, Majdi M, Fakheri BA (2021) Thymol production in hairy root culture of sahendian savory (Satureja sahedica Bornm). Plant Biotechnol Rep 15:177–186

    Article  CAS  Google Scholar 

  • Banihashemi O, Khavari-Nejad RA, Yassa N, Najafi F (2020) Raise uu of scopolamine in hairy roots via Agrobacterium rhizogenes ATCC15834 as compared with untransformed roots in Atropa komarovii. Iran J Pharm Res 19(1):46–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazaldua C, Cardoso-Taketa A, Trejo- Tapia G, Camacho-Diaz B, Arellano J, Ventura Zapata E, Villarreal MLI (2019) Improving the production of podophyllotoxin in hairy roots of Hyptis suaveolens induced from regenerated plantlets. PLoS ONE 14(9):e0222464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat AP, Bhat PP (2016) Sustainable use of plants for heavy metal removal from water: phytoremediation. Int J Appl Sci Biotechnol 4(2):150–154

    Article  CAS  Google Scholar 

  • Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-reguatory elements used to control gene expression in plants. Plant Cell Tissue Organ C 127:269–287. https://doi.org/10.1007/s/11240-016-1057-7

    Article  Google Scholar 

  • Boroujeni NA, Khatouni SB, Motamedi J, Afraz S, Jafari M, Salmanian MJ (2022) Root-preferental expression of newcastle virus glycoproteins driven by NtREL1 promoter in tobacco hairy roots and evaluation of oral delivery in mice. Transgenic Res. https://doi.org/10.1007/s11248-021-00295-2

    Article  PubMed  Google Scholar 

  • Cardon F, Pallisse R, Bardor M, Caron A, Vanier J, Ekouna JPE, Lerouge P, Boitel-Conti M, Guillet M (2019) Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-l-iduronidase. Plant Biotechnol J 17:505–516

    Article  CAS  PubMed  Google Scholar 

  • Catellani M, Lico C, Cerasi M, Massa S, Bromuro C, Torosantucci A, Benavenuto E, Capodicasa C (2020) Optimised production of anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnol 20:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chahardoli M, Fazeli A, Ghabooli M (2018) Recombinant production of bovine lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol Biochem 123:414–421

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Cai Y, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018a) Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J 6(2):162–171. https://doi.org/10.1016/j.cj.2017.08.006

    Article  Google Scholar 

  • Chen R, Chen X, Zhu T, Liu J, **ang X, Yu J, Tan H, Gao S, Li Q, Fang Y, Chen W, Zhang L, Huang B (2018b) Integrated transcript and metabolite profiles reveal that EbCHI plays an important role in scutellarin accumulation in Erigeron breviscapus hairy roots. Front Plant Sci 9:789. https://doi.org/10.3389/fpls.2018.00789

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Fang X, Yuan X, Zhang Y, Li H, Zhou Y, Cui X (2021) Overexpression of transcript factor gmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy 11:170. https://doi.org/10.3390/agronomy11010170

    Article  CAS  Google Scholar 

  • Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl B cyclodextrin. J Proteomics 85:99–108

    Article  CAS  PubMed  Google Scholar 

  • Cuong DM, Park CH, Bong SJ, Kim NS, Kim JK, Park SU (2019) Enhancement of glucosinolate production in watercress (Nasturtium off icinale) hairyr roots by overexpressing cabbage transcription factors. J Agric Food Chem 67:4860–4867

    Article  CAS  PubMed  Google Scholar 

  • Dehdashti SM, Acharjee S, Nomani A, Deka M (2020) Production of pharmaceutical active recombinant globular adiponectin as a secretory protein in Withania somnifera hairy root culture. J Biotechnol 323:302–312

    Article  CAS  PubMed  Google Scholar 

  • Deore SL, Khadabadi SS, Baviskar BA (2020) Expression of heat-labile enterotoxin of Escherichia coli in biolistic transformed hairy roots of Daucus carota L. Pharmacog J 12(60):1440–1443

    Article  CAS  Google Scholar 

  • Desmet S, Dhooghe E, De Keyser E, Van Huylenbroeck J, Geelen D (2021) Compact shoot architecture of Osteospermum fruticosum transformed with Rhizobium rhizogenes. Plant Cell Rep 40:1665–1678. https://doi.org/10.1007/s00299-021-02719-z

    Article  CAS  PubMed  Google Scholar 

  • Dowom AA, Abrishamchi P, Radjabian T, Salami SA (2022) Elicitor-induced phenolic acids accumulation in Salvia virgata Jacq hairy root cultures. Plant Cell Tissue Organ C 148:107–117

    Article  CAS  Google Scholar 

  • Eibl R, Eibl D (2008) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Focus on biotechnology, 6th edn. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3694-1_12

    Chapter  Google Scholar 

  • Ekouna JPE, Boitel-Conti M, Lerouge P, Bardor M, Guerineau F (2017) Enhanced production of recombinant human gastric lipase in turnip hairy roots. Plant Cell Tissue Organ C 131:601–610. https://doi.org/10.1007/s11240-017-1309-1

    Article  CAS  Google Scholar 

  • Eslahi N, Niazi A, Aram F, Afsharifar AR, Taghavi SM (2015) Overexpression of camel lactoferricin recombinant peptide in tobacco hairy roots and study of its antimicrobial activity. Iran J Plant Pathol 4:431–444

    Google Scholar 

  • Fallah A, Akhavian A, Kazemi R, Jafari M, Salmanian AH (2018) Production of recombinant LSC protein in Nicotiana tabacum hairy root: direct vs. indirect, a comparison. J Appl Biotechnol Rep 5(1):1–7

    Article  CAS  Google Scholar 

  • Favero BT, Tan Y, Lin Y, Hansen HB, Shadmani N, Xu J, He J, Muller R, Almeida A, Lutken H (2021) Transgenic Kalanchoe blossfeldiana, containing individual rol genes and open reading frames under 35S promoter, exhibit compact habit, reduced plant growth and altered ethylene tolerance in flowers. Front Plant Sci 12:672023

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangopadhyay M, Dewanjee S, Bhattacharya S (2011) Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. J Biosci Bioeng 111:706–710

    Article  CAS  PubMed  Google Scholar 

  • Gaume A, Komarnytsky S, Borisjuk N, Raskin I (2003) Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 21:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul 83:175–198. https://doi.org/10.1007/s10725-017-0251-x

    Article  CAS  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K (2022) Compendium on food crop plants as a platform for pharmaceutical protein production. Int J Mol Sci 23:3236. https://doi.org/10.3390/ijms23063236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AKK (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ C 120:881–902. https://doi.org/10.1007/s11240-014-0664-4

    Article  CAS  Google Scholar 

  • Ghag SB, Adki VS, Ganapathi TR, Bapat VA, VA (2021) Plant platforms for efficient heterologous protein production. Biotechnol Bioprocess Eng 26:546–567. https://doi.org/10.1007/s12257-020-0374-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharari Z, Bagheri K, Danafar H, Sharafi A (2020) Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSП2 genes. Plant Physiol Biochem 148:35–44

    Article  CAS  PubMed  Google Scholar 

  • Grzegorczyk-Karolak I, Kuźma Ł, Skała E, Kiss AK (2018) Hairy root cultures of Salvia virdis L. for production of polyphenolic compounds. Ind Crops Prod 117:235–244. https://doi.org/10.1016/j.indcrop.2018.03.014

    Article  CAS  Google Scholar 

  • Guerineau F, Mai NTP, Boitel-Conti M (2020) Arabidopsis Hairy roots producing high level of active human gastric lipase. Mol Biotechnol. https://doi.org/10.1007/s12033-019-00233-y

    Article  PubMed  Google Scholar 

  • Guerriero G, Berni R, Unoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Altar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernandez-Sotomayor TSM, Faisal M (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes 9:309. https://doi.org/10.3390/genes9060309

    Article  CAS  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpression GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabisopsis thaliana. Chemosphere 72(7):1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Gurusamy PD, Schafer H, Ramamoorthy S, Wink M (2017) Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS ONE. https://doi.org/10.1371/journal.pone.0182367

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibi P, Grossi De Sa MF, Makhzoum A, Malik S, Lopes da Silva AL, Hefferon K, Soccol CR (2017) Bioengineering hairy roots: Phytoremediation, secondary metabolism, molecular pharming, plant-plant Interactions and biofuels. In: Lichtfouse E (ed) Sustainable agriculture reviews, sustainable agriculture reviews, 22nd edn. Springer, Cham, pp 213–251. https://doi.org/10.1007/978-3-319-48006-0_7

    Chapter  Google Scholar 

  • Habibi P, Soccol CR, Grossi-de-Sa MF (2018) Hairy root-mediated biotransformation: recent advances and exciting prospects. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer, Singapore, pp 185–211. https://doi.org/10.1007/978-981-13-2562-5_8

    Chapter  Google Scholar 

  • Hajibehzad SS, Mehrizi FA, Honari H, Alizadeh H (2017) Hijacking tobacco hairy roots and leaves in order to produce IpaD antigen by means of different signal peptides. J Crop Sci Biotech 20(5):359–368. https://doi.org/10.1007/s12892-017-0005-0

    Article  Google Scholar 

  • Häkkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkänen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 111:336–346

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM, Oksman-Caldentey KM (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci 7:1486

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao X, **e C, Ruan Q, Wu C, Han B, Qian J, Zhou W, Nützmann H-W, Kai G (2021) The transcription factor OpWRKy2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumilla. Hortic Res 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfi B, Khelifi-Slaoui M, Bekhouche M, Benyammi R, Hefferon K, Makhzoum A, Khelifi L (2016) Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium. In Vitro Cell Dev Biol Plant 52:92–98

    Article  CAS  Google Scholar 

  • Hashemi S, Niazi A, Baghizadeh A (2021) Successful use of Nicotiana tabacum hairy roots for the recombinant production of cecropin A peptide. Biotechnol App Biochem 2021:1–11

    Google Scholar 

  • Hedayati A, Naseri F, Nourozi E, Hosseini B, Honari H, Hemmaty S (2022) Response of Saponaria officinalis L. hairy roots to the application of TiO2 nanoparticles in terms of production of valuable polyphenolic compounds and SO6 protein. Plant Physiol Biochem 178:80–92

    Article  CAS  PubMed  Google Scholar 

  • Huang P, **a L, Liu W, Jiang R, Liu X, Tang Q, Xu M, Yu L, Tang Z, Zeng J (2018) Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Sci Rep 8:11986. https://doi.org/10.1038/s41598-018-30560-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huet Y, Ele Ekouna JP, Caron A, Mezreb K, Boitel-Conti M, Guerineau F (2014) Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots. Biotechnol Lett 36:181–190

    Article  CAS  PubMed  Google Scholar 

  • Jafarzade M, Ramezani M, Hedayati F, Mokhtarzade Z, Zare B, Sabet MS, Norouzi P, Malboobi MA (2018) Antibody-mediated resistance to rhizomania disease in sugar beet hairy roots. Plant Pathol J 35(6):692–697. https://doi.org/10.5423/PPJ.OA.04.2018.0073

    Article  Google Scholar 

  • Jiaoa J, Gaia QY, Wanga X, Qina QP, Wanga ZY, Liua J, Fub YJ (2018a) Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression and related antioxidant activity. Ind Crops Prod 124:28–35

    Article  CAS  Google Scholar 

  • Jiaoa J, Gaia QY, Yaoa LP, Niua LL, Zanga YP, Fub YJ (2018b) Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Ind Crops Prod 118:347–354

    Article  CAS  Google Scholar 

  • Kaushal J, Mahajan P (2022) Kinetic evaluation for removal of an anionic diazo direct red 28 by using phytoremediation potential of Salvinia molesta Mitchell. Bull Environ Contam Toxicol 108:437–442. https://doi.org/10.1007/s00128-021-03297-2

    Article  CAS  PubMed  Google Scholar 

  • Kayani WK, Kiani BH, Dilshad E, Mirza B (2018) Biotechnological approaches for artemisinin production in Artemisia. World J Microbiol Biotechnol 34:54. https://doi.org/10.1007/s11274-018-2432-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavareddy G, Kumar A, Ramu VS (2018) Methods of plant rransformation- a review. Int J Curr Microbiol Appl Sci 7:2656–2668. https://doi.org/10.20546/ijcmas.2018.707.312

    Article  CAS  Google Scholar 

  • Khan SA, Siddiqui MH, Osama K (2018) Bioreactors for Hairy roots culture:a review. Curr Biotechnol 7:417–427

    Article  CAS  Google Scholar 

  • Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G (2017) Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors. Molecules 22:880. https://doi.org/10.3390/molecules22060880

    Article  CAS  PubMed Central  Google Scholar 

  • Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G, Wajs-Bonikowska A, Bonikowski R, Sienkiewicz M (2018) The increase of triterpene saponin production induced by trans-anethole in hairy root cultures of Panax quinquefolium. Molecules 23:2674. https://doi.org/10.3390/molecules23102674

    Article  CAS  PubMed Central  Google Scholar 

  • Kofronova M, Hrdinova A, Masková P, Soudek P, Tremlovac J, Pinkas D, Lipavska H (2019) Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotoxicol Envirol Saf 174:295–304

    Article  CAS  Google Scholar 

  • Krzemińska M, Owczarek A, Gonciarz W, Chmiela M, Olszewska MA, Grzegorczyk-Karolak I (2022) The antioxidant, cytotoxic and antimicrobial potential of phenolic acids-enriched extract of elicited hairy roots of Salvia bulleyana. Molecules 27:992. https://doi.org/10.3390/molecules27030992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaran A, Vadivel A, McDowell T, Renaud JB, Dhaubhadel S (2021) A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max). Commun Biol 4:356. https://doi.org/10.1038/s42003-021-01889-6

    Article  CAS  Google Scholar 

  • Li B, Wang B, Li H, Peng L, Ru M, Liang Z, Yan X, Zhu Y (2015) Establishment of Salvia castanea Diels f. tomentosa Stib. Hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253(1):87–100

    Article  PubMed  CAS  Google Scholar 

  • Lokhande VH, Kudale S, Nikalje G, Desai N, Suprasanna P (2015) Hairy root induction and phytoremediation of textile dye, reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.). Biotechnol Rep 8:56–63. https://doi.org/10.1016/j.btre.2015.08.002

    Article  Google Scholar 

  • Lonoce C, Marusic C, Morrocchi E, Salzano AM, Andrea Scaloni A, Novelli F, Pioli C, Feeney M, Frigerio L, Donini M (2019) Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures. Biotechnol J 14(3):e1800081. https://doi.org/10.1002/biot.201800081

    Article  CAS  PubMed  Google Scholar 

  • Lystvan K, Listvan V, Shcherbak KM (2021) Rhizoextraction potential of Convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+ removal from aqueous solutions. Appl Biochem Biotechnol 193:1215–1230

    Article  CAS  PubMed  Google Scholar 

  • Mai NTP, Boitel-Conti M, Guerineau F (2016) Arabidopsis thaliana hairy roots for the production of heterologous proteins. Plant Cell Tiss Organ Cult 127:489–496

    Article  CAS  Google Scholar 

  • Maistrenko OM, Luchakivska YS, Zholobak NM, Spivak MY, Kuchuk MV (2015) Obtaining of the transgenic Heliantus tuberosus L. plants, callus and “hairy” root cultures able to express the recombinant human interferon alpha_2b gene. Cytol Genet 49(5):308–313

    Article  Google Scholar 

  • Markowski M, Alsoufi ASM, Szakiel A, Długosz M (2022) Effect of ethylene and abscisic acid on steroid and triterpenoid synthesis in Calendula officinalis hairy roots and saponin release to the culture medium. Plants 11:303. https://doi.org/10.3390/plants11030303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez C, Petruccelli S, Giulietti AM, Alvarez MA (2005) Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Electron J Biotechnol. https://doi.org/10.2225/vol8-issue2-fulltext-10

    Article  Google Scholar 

  • Massa S, Paolini F, Marino C, Franconi R, Venuti A (2019) Bioproduction of a therapeutic vaccine against human papillomavirus in tomato hairy root cultures. Front Plant Sci 10:452. https://doi.org/10.3389/fpls.2019.00452

    Article  PubMed  PubMed Central  Google Scholar 

  • Matvieieva NA, Yi R, Duplij VP, Shakovsky AM, Kuchuk MV (2021) Effect of temperature stress on the Althaea officinalis’s hairy rots carrying the human interferon α2b gene. Cyto Genet 55:207–212

    Article  Google Scholar 

  • Mauro ML, Bettini PP (2021) Agrobacterium rhizogenes rolB oncogene: an intriguing player for many roles. Plant Physiol Biochem 165:10–18

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goel MG, Srivastava V, Rahman LU (2015) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37:253–263. https://doi.org/10.1007/s10529-014-1695-y

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Mishra S, Srivastava V (2016) Bioreactor technology for hairy roots cultivation. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems reference series in phytochemistry. Springer, Cham, pp 483–506. https://doi.org/10.1007/978-3-319-32004-5_10-1

    Chapter  Google Scholar 

  • Miklaszewska M, Banaś A, Królicka A (2017) Metabolic engineering of fatty alcohol production in transgenic hairy roots of Crambe abyssinica. Biotechnol Bioeng 114:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64(18):5687–5694. https://doi.org/10.1093/jxb/ert342

    Article  CAS  PubMed  Google Scholar 

  • Moghadam A, Niazi A, Afsharifar A, Taghavi SM (2016) Expression of a recombinant anti-HIV and anti-tumor Protein, MAP30, in Nicotiana tabacum hairy roots: a pH-stable and thermophilic antimicrobial protein. PLoS ONE 11(7):e0159653. https://doi.org/10.1371/journal.pone.0159653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Niazi A, Aram F, Hassani F, Ghasemi Y (2020) Transformation of the l-asparaginase II gene to potato hairy roots for production of recombinant protein. J Crop Sci Biotech 23(1):81–88

    Article  Google Scholar 

  • Mukherjee C, Samanta T, Mitra A (2016) Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota. Planta 243:305–320

    Article  CAS  PubMed  Google Scholar 

  • Murthy HN, Park SY, Paek KY (2017) Production of ginsenosides by hairy root cultures of Panax ginseng. In: Malik S (ed) Production of plant derived natural compounds through hairy root culture. Springer, Cham, pp 203–216

    Chapter  Google Scholar 

  • Musin KG, Fedaev VV, Kulev BR (2021) State od antioxidant system and long-term storage of tobacco hairy roots with constitutive expression of gluthatione-S-transferase gene ATGSTF11. Russ J Plant Physiol 68:641–651

    Article  CAS  Google Scholar 

  • Nabiabad HS, Piri K, Amini M (2018) Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr Purif 152:137–145. https://doi.org/10.1016/j.pep.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Naphatsamon U, Ohashi T, Misaki R, Fujiyama K (2018) The Production of human-glucocerebrosidase in Nicotiana benthamiana root culture. Int J Mol Sci 19:1972. https://doi.org/10.3390/ijms19071972

    Article  CAS  PubMed Central  Google Scholar 

  • Nazeri A, Niazi A, Afsharifar A, Taghavi SM, Moghadam A, Aram F (2021) Heterologos production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep 11:17966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neagoe A, Tenea G, Cucu N, Ion S, Iordache V (2017) Coupling Nicotiana tabaccum transgenic plants with Rhizophagus irregularis for phytoremediation of heavy metal polluted areas. Rev Chim 68(4):789–795. https://doi.org/10.37358/RC.17.4.5554

    Article  CAS  Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Mandoulakani BA (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99:6418–6430

    Article  CAS  PubMed  Google Scholar 

  • Owczarek B, Gerszberg A, Hnatuszko-Konka K (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. BioMed Res Int 8:4216060. https://doi.org/10.1155/2019/4216060

    Article  CAS  Google Scholar 

  • Paisio CE, Agostini E, González PS (2021) Application of two bioassays as potential indicators of phenol phytoremediation efficiency by tobacco hairy roots. Environ Technol 6:964–971. https://doi.org/10.1080/09593330.2019.1649471

    Article  CAS  Google Scholar 

  • Pandey N, Kumar Rai K, Pandey-Rai S (2021) Heterologous expression of cyanobacterial PCS confers augumented arsenic and cadmium stress tolerance and higher artemisinin in Artemisia annua hairy roots. Plant Biotechnol Rep 15:317–334. https://doi.org/10.1007/s11816-021-00682-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parizi KJ, Rahpeyma SA, Pourseyedi S (2020) The novel paclitaxel-producing system: establishment of Corylus avellana L. hairy root culture. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-019-10050-2

    Article  Google Scholar 

  • Park CH, Park YE, Yeo HJ, Park NI, Park SU (2021a) Effect of light and dark on the phenolic compound accumulation in tartary buckwheat hairy roots overexpressing ZmLC. Int J Mol Sci 22:4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CH, Xu H, Yeo HJ, Park YE, Hwang G-S (2021b) Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metab Eng 64:64–73

    Article  CAS  PubMed  Google Scholar 

  • Pavlova OA, Matveyeva TV, Lutova LA (2014) rol_Genes of Agrobacterium rhizogenes. Russ J Genet 4:137–145. https://doi.org/10.1134/S2079059714020063

    Article  Google Scholar 

  • Perotti R, Paisio CE, Agostini E, Fernandez MI, González PS (2020) CR(VI) phytoremediation by hairy roots of Brassica napus: assessing efficiency, mechanisms involved, and post-removal toxicity. Environ Sci Pollut Res 27:9465–9474. https://doi.org/10.1007/s11356-019-07258-5

    Article  CAS  Google Scholar 

  • Pham NB, Schäfer H, Wink M (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545

    Article  CAS  PubMed  Google Scholar 

  • Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol. https://doi.org/10.1007/978-1-4419-7347-4_13

    Article  PubMed  Google Scholar 

  • Praveen N, Murthy HN (2012) Synthesis of withanolide a depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crop Prod 35:241–243

    Article  CAS  Google Scholar 

  • Qin S, Liu Y, Yan J, Lin S, Zhang W, Wang B (2022) An optimized tobacco hairy root induction system for functional analysis of nicotine biosynthesis-related genes. Agronomy 12:348. https://doi.org/10.3390/agronomy12020348

    Article  CAS  Google Scholar 

  • Rage E, Marusic C, Lico C, Salzano AM, Scaloni A, Baschieri S, Donini M (2020) Optimisation of PD-FcY veterinary antigen secretion from Nicotiana benthamiana hairy roots and purification from the culture medium. Plant Cell Tiss Org C 142:23–39

    Article  CAS  Google Scholar 

  • Rangslang RK, Liu Z, Lutken H, Favero BT (2018) Agrobacterium spp genes and ORFs: mechanism and applications in plant science. Cienc e Agrotecnologia 42(5):453–463

    Article  CAS  Google Scholar 

  • Reis A, Boutet-Mercey S, Massot S, Ratet P, Silveira Zuanazzi JA (2019) Isoflavone production in hairy root cultures and plantlets of Trifolium pratense. Biotechnol Lett 41:427–442

    Article  CAS  PubMed  Google Scholar 

  • Ricigliano V, Kumar S, Kinison S, Brooks C, Nybo SE, Chappell J, Howarth DG (2016) Regulation of sesquiterpenoid metabolism in recombinant and elicited Valeriana officinalis hairy roots. Phytochemistry 125:43–53

    Article  CAS  PubMed  Google Scholar 

  • Ru M, Li Y, Guo M, Chen L, Tan Y, Peng Y, Liang Z (2022) Increase in rosmarinic acid accumulation and transcriptional responses of synthetic genes in hairy root cultures of Prunella vulgaris induced by methyl jasmonate. Plant Cell Tissue Organ C 149:371–379

    Article  CAS  Google Scholar 

  • Sahai P, Sinha VB (2022) Development of hairy root culture in Taxux baccata sub sp Wallichiana as alternative for increased Taxol production. Mater Today 49:3443–3448

    CAS  Google Scholar 

  • Sakamoto S, Putalun W, Pongkitwitoon B, Juengwatanatrakul T, Shoyama Y, Tanaka H, Morimoto S (2012) Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin. Plant Cell Rep 31:103–110

    Article  CAS  PubMed  Google Scholar 

  • Salmanzadeh M, Sabet MS, Moieni A, Homaee M (2020) Heterologous expression of an acid phosphatase gene and phosphate limitation leads to substantial production of chicoric acid in Echinacea purpurea transgenic hairy roots. Planta 251:31. https://doi.org/10.1007/s00425-019-03317-w

    Article  CAS  Google Scholar 

  • Sarkar S, Jha S (2021) Effects associated with insertion of rol genes on morphogenic potential in explants derived from transgenic Bacopa monnieri (L.) Wettst. Plant Cell Tissue Organ C 146:541–552

    Article  CAS  Google Scholar 

  • Shakaren Z, Keyhanfar M, Ghandian M (2017) Biotic elicitation for scopolamine production by hairy root cultures of Datura metel. Mol Biol Res Commun 6(4):169–176. https://doi.org/10.22099/mbrc.2017.25776.1275

    Article  CAS  Google Scholar 

  • Sharekan Z, Keyhanfar M, Asghari G, Ghandian M (2015) Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk J Biol 39:111–118

    Article  CAS  Google Scholar 

  • Shi M, Luo X, Ju G, Li L, Huang S, Zhang T, Wang H, Kai G (2016) Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64(12):2523–2530. https://doi.org/10.1021/acs.jafc.5b04697

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Gong H, Wang Q, Wang C, Wang Y, Kai G (2020) Targeted metabolic engineering of committed steps improves anti-cancer drug camptothecin production in Ophiorrhiza pumila hairy roots. Ind Crop Prod 148:112277. https://doi.org/10.1016/j.indcrop.2020.112277

    Article  CAS  Google Scholar 

  • Singh A, Srivastava S, Chouksey A, Singh Panwar B, Verma PC, Sribash RS, Singh PK, Saxena G, Tuli R (2015) Expression of rabies glycoprotein and ricin toxin B chain (RGP–RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies. Mol Biotechnol 57:359–370

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Chattopadhyay T, Thakur D, Kumar N, Kumar T, Singh PK (2018) Hairy root culture for in vitro production of secondary metabolites: a promising biotechnological approach. In: Kumar N (ed) Biotechnological approaches for medicinal and aromatic plants. Springer, Berlin. https://doi.org/10.1007/978-981-13-0535-1_10

    Chapter  Google Scholar 

  • Sivanandhan G, Dev G, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tiss Org Cult 114:121–129

    Article  CAS  Google Scholar 

  • Srikantan C, Srivastava S (2018) Bioreactor design and analysis for large-scale plant cell and hairy root cultivation. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer, Singapore. https://doi.org/10.1007/978-981-13-2562-5_7

    Chapter  Google Scholar 

  • Srikantan C, Suraishkumar GK, Srivastava S (2021) A synergistic effect of physicochemical parameters on dye removal and concomitant antioxidant production in sunflower hairy roots. Int J Environ Sci Technol 144:485–490

    Google Scholar 

  • Srivastava M, Sharma S, Misra P (2016) Elicitation based enhancement of secondary metabolites in Rauwolfia serpentina and Solanum khasianum hairy root cultures. Pharmacogn Mag 12(Suppl 3):S315–S320. https://doi.org/10.4103/0973-1296.185726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava M, Singh G, Sharma S, Shukla S, Misra P (2018) Elicitation enhanced the yield of glycyrrhizin and antioxidant activities in hairy root cultures of Glycyrrhiza glabra L. J Plant Growth Regul 38(2):373–384. https://doi.org/10.1007/s00344-018-9847-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Min Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G (2019) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70(1):243–254. https://doi.org/10.1093/jxb/ery349

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lu Q, Cao Y, Wang M, Cheng X, Yan Q (2020) Comparative transcriptome analysis of the molecular mechanism of the hairy roots of Brassica campestris L. in response to cadmium stress. Int J Mol Sci 21(1):180. https://doi.org/10.3390/ijms21010180

    Article  CAS  Google Scholar 

  • Sunil Kumar GB, Ganapathi TR, Srinivas L, Revathi CJ, Bapat VA (2016) Expression of hepatitis B surface antigen in potato hairy roots. Plant Sci 170:918–925

    Article  CAS  Google Scholar 

  • Sykłowska-Baranek K, Grech-Baran M, Naliwajski MR, Bonfill M, Pietrosiuk A (2015) Paclitaxel production and PAL activity in hairy root cultures of taxus x media. var hicksii carrying a taxadiene synthase transgene elicited with nitric oxide and methyl jasmonate. Acta Physiol Plant 37:218. https://doi.org/10.1007/s11738-015-1949-x

    Article  CAS  Google Scholar 

  • Tabar RS, Moieni A, Monfared SR (2019) Improving biomass and chicoric acid content in hairy roots of Echinacea purpurea L. Biologia 74:941–951. https://doi.org/10.2478/s11756-019-00232-z

    Article  CAS  Google Scholar 

  • Tavizi A, Javaran MJ, Moieni A, Mohammadi-Dehcheshmeh A, Mohebodini M, Ebrahimie E (2015) Root and shoot parts of strawberry: factories for production of functional human pro-insulin. Mol Biol 42:1013–1023

    CAS  Google Scholar 

  • Tisserant L, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv pinot noir hairy root cultures. Molecules 21:1703. https://doi.org/10.3390/molecules21121703

    Article  CAS  PubMed Central  Google Scholar 

  • Tiwari R, Rana CS (2015) Plant secondary metabolites: a review. Int J Engin Res Gen Sci 3(5):661–670

    Google Scholar 

  • Varasteh Shams M, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R (2019) Production of a recombinant dermaseptin peptide in Nicotiana tabacum hairy roots with enhanced antimicrobial activity. Mol Biotechnol 61:241–252. https://doi.org/10.1007/s12033-019-00153-x

    Article  CAS  Google Scholar 

  • Varghese S, Bincy Baby RK, Nazeem PA (2014) Genetic transformation in ashwagandha (Withania somnifera (L.) dunal) for hairy root induction and enhancement of secondary metabolites. J Trop Agric 52:39–46

    Google Scholar 

  • Ventura-Camargo B, Franceschi de Angelis D, Aparecida MA (2016) Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere 161:325–332

    Article  CAS  PubMed  Google Scholar 

  • Vu PTB, Cao DM, Bui AL, Nguyen NN, Bui LV, Quach PND (2022) In vitro growth and content of vincristine and vinblastine of Catharanthus roseus L. hairy roots in response to precursors and elicitors. Plant Sci Today 9:21–28

    Article  CAS  Google Scholar 

  • Wang Y, Yang B, Zhang M, Jia S, Yu F (2019) Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots. Plant Cell Tissue Organ C 139:523–530. https://doi.org/10.1007/s11240-019-01696-2

    Article  CAS  Google Scholar 

  • Wierzchowski K, Kawka M, Sykłowska-Baranek K, Maciej Pilarek (2021) Proliferation of Rindera graeca transgenic roots in oscillatory rocked disposable bioreactor. In: 3rd international scientific conference “chemical technology and engineering”, June 21–24th, 2021, LVIV, Ukraine

  • Woods RR, Geyer BC, Tsafrir S, Mor TS (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95. https://doi.org/10.1186/1472-6750-8-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Ming Q, Zhai X, Wang S, Zhu B, Zhang Q, Xu Y, Shi S, Shunchun Wang S, Zhang Q, Han T, Qin L (2019) Structure of a polysaccharide from Trichoderma atroviride and its promotion on tanshinones production in Salvia miltiorrhiza hairy roots. Carbohydr Polym 223:115125

    Article  CAS  PubMed  Google Scholar 

  • www.protalix.com. Accessed Feb 2022.

  • **aolong H, Min S, Lijie C, Chao X, Yanjie Z, Guoyin K (2015) Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnol Appl Biochem 62(1):24–31. https://doi.org/10.1002/bab.1236

    Article  CAS  Google Scholar 

  • Yao Q, Yu Z, Liu P, Zheng H, Xu Y, Sai S, Wu Y, Zheng C (2019) High efficient expression and purification of human epidermal growth factor in Arachis hypogaea L. Int J Mol Sci 20:2045. https://doi.org/10.3390/ijms20082045

    Article  CAS  PubMed Central  Google Scholar 

  • Yi TG, Park Y, Park JE, Park NI (2019) Enhancement of phenolic compounds and antioxidative activities by the combination of culture medium and methyl jasmonate elicitation in hairy root cultures of Lactuca indica L. Nat Prod Commun. https://doi.org/10.1177/1934578X19861867

    Article  Google Scholar 

  • Yuan Y, Huang L, Cui G, Mao Y, He X (2008) Effect of gibberellins and its synthetic inhibitor on metabolism of tanshinones. Chin J Exp Trad Med Formulae 6:002

    Google Scholar 

  • Zahanis M, Noli ZA, Bakhtiar A (2016) Production of asiaticoside from hairy roots culture of pegagan (Centella asiatica (L.)) urban using chitosan and its derivates as elisitors. J Chem Pharm Res 8(2):808–812

    CAS  Google Scholar 

  • Zhang R, Zhang BL, Li GC, **e T, Hu T, Luo ZY (2015) Enhancement of ginsenoside Rg1 in Panax ginseng hairy root by overexpressing the ∝-l-rhamnosidase gene from Bifidobacterium breve. Biotechnol Lett 37:2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wright T, Wang X, Karki U, Savary BJ, Xu J (2018) Engineering ‘designer’ glycomodules for boosting recombinant protein secretion in tobacco hairy root culture and studying hydroxyproline-O-glycosylation process in plants. Plant Biotechnol 17(6):1130–1141. https://doi.org/10.1111/pbi.13043

    Article  CAS  Google Scholar 

  • Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, Chen XY, Xue H, Martin C (2016) A specialized flavone biosynthetic pathway has evolved in the medicinal plant. Scutellaria Baicalensis Sci Adv 2(4):e1501780. https://doi.org/10.1126/sciadv.1501780

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Nambiar-Veetil M, Bogusz D, Franche C (2018) Hairy roots as a tool for the functional analysis of plant genes. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer, Singapore. https://doi.org/10.1007/978-981-13-2562-5_12

    Chapter  Google Scholar 

  • Zolfaghari F, Rashidi-Monfared S, Moieni A, Abedini D, Ebrahimi A (2020) Improving diosgenin production and its biosynthesis in Trigonella foenum-graecum L. hairy root cultures. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.112075

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AG developed the concept and wrote the manuscript. AWS was responsible for resources.

Corresponding author

Correspondence to Aneta Gerszberg.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest regarding the publication of this article.

Additional information

Communicated by Maria Margarida Oliveira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerszberg, A., Wiktorek-Smagur, A. Hairy root cultures as a multitask platform for green biotechnology. Plant Cell Tiss Organ Cult 150, 493–509 (2022). https://doi.org/10.1007/s11240-022-02316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02316-2

Keywords

Navigation