Log in

RNA interference-mediated resistance to maize dwarf mosaic virus

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Maize dwarf mosaic virus (MDMV) is a widespread pathogen that causes serious yield loss to maize crops. A hairpin RNA expression vector was constructed herein to overcome the low efficiency of cultural protection against MDMV and to improve the MDMV resistance mediated by a shorter transgenic inverted-repeat sequence. This expression vector contained a 451 bp inverted-repeat sequence, homologous to the protease gene (P1) of MDMV. It was used for the Agrobacterium tumefaciens-mediated transformation of maize calli induced from a susceptible inbred line. A total of 17 T2 transgenic lines were identified by both specific PCR amplification and Southern blot hybridization. Of these lines, 15 were evaluated for MDMV resistance in inoculation field trials under two environments. The relative replication levels of the P1 gene were analyzed by quantitative real-time (qRT)-PCR. Results demonstrated that all of the 15 T2 lines showed an enhanced resistance to MDMV in comparison with that of the non-transformed parent line. Six lines were deemed to be ‘resistant’ with an average disease index below 25 %, which was not significantly different from that of the resistant control. The relative replication levels of the virus gene were significantly reduced in these resistant T2 transgenic lines. The efficiency of virus gene silencing was directly related to the transgene copy numbers presented in these transgenic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Achon MA, Alonso-Duenas N, Serrano L (2011) Maize dwarf mosaic virus diversity in the Johnsongrass native reservoir and in maize: evidence of geographical, host and temporal differentiation. Plant Pathol 60:369–377. doi:10.1111/j.1365-3059.2010.02364.x

    Article  Google Scholar 

  • Anami E, Mgutu AJ, Taracha C, Coussens G, Karimi M, Hilson P, van Lijsebettens M, Machuka J (2010) Somatic embryogenesis and plant regeneration of tropical maize genotypes. Plant Cell Tiss Org Cult 102:285–295. doi:10.1007/s11240-010-9731-7

    Article  CAS  Google Scholar 

  • Chen YK, Lohuis D, Goldbach R, Prins M (2004) High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226. doi:10.1023/B:MOLB.0000047769.82881.f5

    Article  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, **ng SC, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of Poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to poinsettia mosaic virus. Plant Cell Rep 27:1027–1038. doi:10.1007/s00299-008-0526-9

    Article  CAS  PubMed  Google Scholar 

  • Cronin S, Verchot J, Haldemancahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor, a transport function of the potyvirus helper component proteinase. Plant Cell 7:549–559. doi:10.1105/tpc.7.5.549

    CAS  PubMed  Google Scholar 

  • de Oliveira E, de Oliveira Resende R, de la Paz Gimenez Pecci M, Laguna IG, Herrera P, Cruz I (2003) Occurrence of viruses and stunting diseases and estimative of yield losses by mollicutes in corn in Parana State, Brazil. Pesqui Agro Bras 38:19–25

    Google Scholar 

  • Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ (2010) Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 8:821–834. doi:10.1111/j.1467-7652.2010.00513.x

    Article  CAS  PubMed  Google Scholar 

  • Fu FL, He J, Zhang ZY, Zhou SF, Zhang SZ, Li WC (2011) Further improvement of N6 medium for callus induction and plant regeneration from maize immature embryos. Afr J Biotechnol 10:2618–2624

    CAS  Google Scholar 

  • Gan D, Zhang J, Jiang H, Jiang T, Zhu S, Cheng B (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29:1261–1268. doi:10.1007/s00299-010-0911-z

    Article  CAS  PubMed  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232. doi:10.1038/nbt1107-1231

    Article  CAS  PubMed  Google Scholar 

  • Hily JM, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum pox virus coat protein gene hairpin-RNA (hpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana and Prunus domestica. J Am Soc Hort Sci 132:850–858

    CAS  Google Scholar 

  • Hohmann F, Fuchs E, Gruntzig M (1998) Investigations on host range of sugarcane mosaic potyvirus (SCMV) and maize dwarf mosaic potyvirus (MDMV) in Germany. Arch Phytopathol Plant Prot 31:507–518

    Article  Google Scholar 

  • Jiang JX, Zhou XP (2002) Maize dwarf mosaic disease in different regions of China is caused by sugarcane mosaic virus. Arch Virol 147:2437–2443. doi:10.1007/s00705-002-0890-7

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Wang J, Liu Z, Wang L, Zhang F, Liu G-C, Zhong Q (2010) Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell Tiss Org Cult 100:139–148. doi:10.1007/s11240-009-9629-4

    Article  CAS  Google Scholar 

  • Jones MW, Boyd EC, Redinbaugh MG (2011) Responses of maize (Zea mays L.) near isogenic lines carrying Wsm1, Wsm2, and Wsm3 to three viruses in the Potyviridae. Theor Appl Genet 123:729–740. doi:10.1007/s11032-012-9789-5

    Article  CAS  PubMed  Google Scholar 

  • Kong P, Steinbiss HH (1998) Complete nucleotide sequence and analysis of the putative polyprotein of Maize dwarf mosaic virus genomic RNA (Bulgarian isolate). Arch Virol 143:1791–1799. doi:10.1007/s007050050417

    Article  CAS  PubMed  Google Scholar 

  • Kuntze L, Fuchs E, Grutzig M, Schulz B, Henning U, Hohmann F, Melchinger AE (1995) Evaluation of maize inbred lines for resistance to sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). Agronomie 15:463–467. doi:10.1051/agro:19950714

    Article  Google Scholar 

  • Li L, Wang X, Zhou G (2007) Analyses of maize embryo invasion by sugarcane mosaic virus. Plant Sci 172:131–138. doi:10.1016/j.plantsci.2006.08.006

    Article  CAS  Google Scholar 

  • Lin K (1989) Studies on the resistance of corn inbred lines and hybrids to maize dwarf mosaic virus strain B. Sci Agric Sin 22:57–61

    Google Scholar 

  • Liu X, Tan Z, Li W, Zhang H, He D (2009) Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB. Afr J Biotechnol 8:3747–3753

    CAS  Google Scholar 

  • Louie R (1986) Effects of genotype and inoculation protocols on resistance evaluation of maize to maize dwarf mosaic virus strains. Phytopathology 76:769–773

    Article  Google Scholar 

  • Ma J, Song Y, Wu B, Jiang M, Li K, Zhu C, Wen F (2011) Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Res 20:1367–1377. doi:10.1007/s11248-011-9502-1

    Article  CAS  PubMed  Google Scholar 

  • Meyer MD, Pataky JK (2010) Increased severity of foliar diseases of sweet corn infected with maize dwarf mosaic and sugarcane mosaic viruses. Plant Dis 94:1093–1099. doi:10.1094/PDIS-94-9-1093

    Article  Google Scholar 

  • Murry LE, Elliott LG, Capitant SA, West JA, Hanson KK, Scarafia L, Johnston S, DeLuca-Flaherty C, Nichols S, Cunanan D, Dietrich PS, Mettler IJ, Dewald S, Warnick DA, Rhodes C, Sinibaldi RM, Brunke KJ (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Nat Biotechnol 11:1559–1564. doi:10.1038/nbt1293-1559

    Article  CAS  Google Scholar 

  • Pradeep K, Satya VK, Selvapriya M, Vijayasamundeeswari A, Ladhalakshmi D, Paranidharan V, Rabindran R, Samiyappan R, Balasubramanian P, Velazhahan R (2012) Engineering resistance against Tobacco streak virus (TSV) in sunflower and tobacco using RNA interference. Biol Plant 56:735–741. doi:10.1007/s10535-012-0111-5

    Article  CAS  Google Scholar 

  • Praveen S, Ramesh SV, Mishra AK, Koundal V, Palukaitis P (2010) Silencing potential of viral derived RNAi constructs in Tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res 19:45–55. doi:10.1007/s11248-009-9291-y

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Datta K, Parkhi V, Tan J, Oliva N, Chawla HS, Datta SK (2007) Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice. Plant Cell Rep 26:1221–1231. doi:10.1007/s00299-007-0333-8

    Article  CAS  PubMed  Google Scholar 

  • Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tiss Org Cult 100:31–37. doi:10.1007/s11240-009-9613-z

    Article  Google Scholar 

  • Redinbaugh MG, Jones MW, Gingery RE (2004) The genetics of virus resistance in maize (Zea mays.L). Maydica 47:183–190

    Google Scholar 

  • Reyes CA, de Francesco A, Pena EJ, Costa N, Plata MI, Sendin L, Castagnaro AP, Garcia ML (2011) Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. J Biotechnol 151:151–158. doi:10.1016/j.jbiotec.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler C (2005) Resistance to plant viruses: old issue, news answers? Curr Opin Biotechnol 16:118–122. doi:10.1016/j.copbio.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgesen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakazono-Nagaoka E, Uehara-Ichiki T, Sasaya T, Omura T (2011) Targeting specific genes for RNA interference is crucial to the development of strong resistance to Rice stripe virus. Plant Biotechnol J 9:503–512. doi:10.1111/j.1467-7652.2010.00571.x

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208. doi:10.1023/B:MOLB.0000018767.64586.53

    Article  CAS  Google Scholar 

  • Sun C, Zhang G, Li M, Wang X, Zhang G, Tian Y, Wang Z (2010) Sequence characterized amplified region markers tightly linked to the dwarf mosaic resistance gene mdm1 (t) in maize (Zea mays L.). Euphytica 174:219–229. doi:10.1007/s10681-010-0120-4

    Article  CAS  Google Scholar 

  • Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragao FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27. doi:10.1186/1741-7007-8-27

    Article  PubMed  Google Scholar 

  • Travella S, Ross S, Harden J, Everett C, Snape J, Harwood W (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789. doi:10.1007/s00299-004-0892-x

    Article  CAS  PubMed  Google Scholar 

  • Trzmiel K, Jezewska M (2008) Identification of maize dwarf mosaic virus in maize in Poland. Plant Dis 92:981. doi:10.1094/PDIS-92-6-0981A

    Article  Google Scholar 

  • Uzarowska A, Dionisio G, Sarholz B, Piepho HP, Xu ML, Ingvardsen CR, Wenzell G, Lubberstedt T (2009) Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biol 9:1–15. doi:10.1186/1471-2229-9-15

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034. doi:10.1186/gb-2002-3-7-research0034

  • Vega J, Yu W, Kennon A, Chen X, Zhang Z (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305. doi:10.1007/s00299-007-0463-z

    Article  CAS  PubMed  Google Scholar 

  • Williams MM, Pataky JK (2012) Interactions between maize dwarf mosaic and weed interference on sweet corn. Field Crop Res 128:48–54. doi:10.1016/j.fcr.2011.12.005

    Article  Google Scholar 

  • Wu J, Ding J, Du Y, Xu Y, Zhang X (2007) Genetic analysis and molecular map** of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica 156:355–364. doi:10.1007/s10681-007-9384-8

    Article  CAS  Google Scholar 

  • ** of a novel sugarcane mosaic virus resistance gene in maize. Acta Agron Sin 34:1494–1499. doi:10.1016/S1875-2780(09)60002-X

    Article  CAS  Google Scholar 

  • Yang L, Fu FL, Zhang ZY, Zhou SF, She YH, Li WC (2011) T-DNA integration patterns in transgenic maize lines mediated by Agrobacterium tumefaciens. Afr J Biotechnol 10:12614–12625

    CAS  Google Scholar 

  • Zeng FS, Zhan YG, Zhao HC, **n Y, Qi FH, Yang CP (2010) Molecular characterization of T-DNA integration sites. Trees 24:753–762. doi:10.1007/s00468-010-0445-6

    Article  CAS  Google Scholar 

  • Zhang ZY, Fu FL, Gou L, Wang HG, Li WC (2010) RNA interference-based transgenic maize resistant to maize dwarf mosaic virus. J Plant Biol 53:297–305. doi:10.1007/s12374-010-9117-8

    Article  CAS  Google Scholar 

  • Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL (2011) Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol 153:181–187. doi:10.1016/j.jbiotec.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Song Y, Jiang F, Li G, Jiang Y, Zhu C, Wen F (2012) Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Biol Plant 56:742–748. doi:10.1007/s10535-012-0117-z

    Article  CAS  Google Scholar 

  • Zhou Y, Yuan Y, Yuan F, Wang M, Zhong H, Gu M, Liang G (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett 34:965–972. doi:10.1007/s10529-012-0848-0

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Wu J, He C (2010) Induction of chromosomal inversion by integration of T-DNA in the rice genome. J Genet Genomics 37:189–196. doi:10.1016/S1673-8527(09)60037-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the financial support from the Projects of Development Plan of the State Key Fundamental Research (973 Project 2009CB118401), the National Key Science and Technology Special Project (2009ZX08003012B and 2013ZX08003-004), and the technical support from Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region. The authors thank the anonymous reviewers for their critical comments and suggestions, and Ms Dominique Thomas at Cornell University for her help in improving the English writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Chen Li or Feng-Ling Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZY., Wang, YG., Shen, XJ. et al. RNA interference-mediated resistance to maize dwarf mosaic virus. Plant Cell Tiss Organ Cult 113, 571–578 (2013). https://doi.org/10.1007/s11240-013-0289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0289-z

Keywords

Navigation