Log in

Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Thromboembolic diseases including arterial and venous thrombosis are common causes of morbidity and mortality globally. Thrombosis frequently recurs and can also complicate many inflammatory conditions through the process of ‘thrombo-inflammation,’ as evidenced during the COVID-19 pandemic. Current candidate biomarkers for thrombosis prediction, such as D-dimer, have poor predictive efficacy. This limits our capacity to tailor anticoagulation duration individually and may expose lower risk individuals to undue bleeding risk. Global coagulation assays, such as the Overall Haemostatic Potential (OHP) assay, that investigate fibrin generation and fibrinolysis, may provide a more accurate and functional assessment of hypercoagulability. We present a review of fibrin’s critical role as a central modulator of thrombotic risk. The results of our studies demonstrating the OHP assay as a predictive biomarker in venous thromboembolism, chronic renal disease, diabetes mellitus, post-thrombotic syndrome, and COVID-19 are discussed. As a comprehensive and global measurement of fibrin generation and fibrinolytic capacity, the OHP assay may be a valuable addition to future multi-modal predictive tools in thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wendelboe AM, Raskob GE (2016) Global Burden of Thrombosis. Circ Res 118:1340–1347. https://doi.org/10.1161/circresaha.115.306841

    Article  CAS  PubMed  Google Scholar 

  2. Khan F, Rahman A, Carrier M et al (2019) Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ (Clinical Res ed) 366:l4363. https://doi.org/10.1136/bmj.l4363

    Article  Google Scholar 

  3. Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 18:666–682. https://doi.org/10.1038/s41569-021-00552-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klok FA, Kruip MJHA, Meer NJM, van der et al (2020) Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 191:145–147. https://doi.org/10.1016/j.thromres.2020.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tan BK, Mainbourg S, Friggeri A et al (2021) Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis. Thorax 76:970–979. https://doi.org/10.1136/thoraxjnl-2020-215383

    Article  PubMed  Google Scholar 

  6. Versteeg HH, Heemskerk JWM, Levi M, Reitsma PH (2013) New fundamentals in Hemostasis. Physiol Rev 93:327–358. https://doi.org/10.1152/physrev.00016.2011

    Article  CAS  PubMed  Google Scholar 

  7. Lim HY, Donnan G, Nandurkar H, Ho P (2022) Global coagulation assays in hypercoagulable states. J Thromb Thrombolys 54:132–144. https://doi.org/10.1007/s11239-021-02621-1

    Article  Google Scholar 

  8. Lim HY, O’Malley C, Donnan G et al (2019) A review of global coagulation assays — is there a role in thrombosis risk prediction? Thromb Res 179:45–55. https://doi.org/10.1016/j.thromres.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  9. Eichinger S, Hron G, Kollars M, Kyrle PA (2008) Prediction of recurrent venous thromboembolism by endogenous thrombin potential and D-dimer. Clin Chem 54:2042–2048. https://doi.org/10.1373/clinchem.2008.112243

    Article  CAS  PubMed  Google Scholar 

  10. Tripodi A, Legnani C, Chantarangkul V et al (2008) High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thromb Haemost 6:1327–1333. https://doi.org/10.1111/j.1538-7836.2008.03018.x

    Article  CAS  PubMed  Google Scholar 

  11. Young G, Sørensen B, Dargaud Y et al (2013) Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: current state of art and future perspectives. Blood 121:1944–1950. https://doi.org/10.1182/blood-2012-08-378935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim HY, Lui B, Tacey M et al (2023) Global coagulation assays in patients with chronic kidney disease and their role in predicting thrombotic risk. Thromb Res 226:127–135. https://doi.org/10.1016/j.thromres.2023.04.016

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Lim HY, Brook R et al (2022) Overall haemostatic potential (OHP) assay can risk stratify for venous thromboembolism recurrence in anticoagulated patients. J Thromb Thrombolysis 55:32–41. https://doi.org/10.1007/s11239-022-02686-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Choy KW, Lim HY, Ho P (2022) Impaired fibrinolytic potential predicts Oxygen requirement in COVID-19. J Personalized Med 12:1711. https://doi.org/10.3390/jpm12101711

    Article  CAS  Google Scholar 

  15. Drake TA, Morrissey JH, Edgington TS (1989) Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 134:1087–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mann KG, Brummel-Ziedins K, Orfeo T, Butenas S (2006) Models of blood coagulation. Blood Cells Mol Dis 36:108–117. https://doi.org/10.1016/j.bcmd.2005.12.034

    Article  CAS  PubMed  Google Scholar 

  17. Litvinov RI, Weisel JW (2023) Blood clot contraction: mechanisms, pathophysiology, and disease. Res Pr Thromb Haemost 7:100023. https://doi.org/10.1016/j.rpth.2022.100023

    Article  Google Scholar 

  18. Wakefield TW, Myers DD, Henke PK, Arter (2008) Thromb Vasc Biol 28:387–391. https://doi.org/10.1161/atvbaha.108.162289

    Article  CAS  Google Scholar 

  19. Weisel JW, Litvinov RI (2019) Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost 17:271–282. https://doi.org/10.1111/jth.14360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299. https://doi.org/10.1016/s0065-3233(05)70008-5

    Article  CAS  PubMed  Google Scholar 

  21. Undas A (2014) Fibrin clot properties and their modulation in thrombotic disorders. Thromb Haemostasis 112:32–42. https://doi.org/10.1160/th14-01-0032

    Article  CAS  Google Scholar 

  22. Okude M, Yamanaka A, Akihama S (1995) The effects of pH on the generation of turbidity and elasticity Associated with Fibrinogen-Fibrin Conversion by Thrombin are remarkably influenced by Sialic Acid in Fibrinogen. Biol Pharm Bull 18:203–207. https://doi.org/10.1248/bpb.18.203

    Article  CAS  PubMed  Google Scholar 

  23. Nair CH, Shah GA, Dhall DP (1986) Effect of temperature, Ph and ionic strength and composition on fibrin network structure and its development. Thromb Res 42:809–816. https://doi.org/10.1016/0049-3848(86)90117-9

    Article  CAS  PubMed  Google Scholar 

  24. Okada M, Blombäck B (1983) Calcium and fibrin gel structure. Thromb Res 29:269–280. https://doi.org/10.1016/0049-3848(83)90039-7

    Article  CAS  PubMed  Google Scholar 

  25. Carr ME, Dent RM, Carr SL (1996) Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma. J Lab Clin Med 128:83–88. https://doi.org/10.1016/s0022-2143(96)90116-x

    Article  CAS  PubMed  Google Scholar 

  26. Cines DB, Lebedeva T, Nagaswami C et al (2014) Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 123:1596–1603. https://doi.org/10.1182/blood-2013-08-523860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zubairova LD, Nabiullina RM, Nagaswami C et al (2015) Circulating microparticles alter formation, structure and Properties of Fibrin Clots. Sci Rep-uk 5:17611. https://doi.org/10.1038/srep17611

    Article  CAS  Google Scholar 

  28. Gould TJ, Vu TT, Stafford AR et al (2018) Cell-free DNA modulates clot structure and impairs Fibrinolysis in Sepsis. Arterioscler Thromb Vasc Biology 35:2544–2553. https://doi.org/10.1161/atvbaha.115.306035

    Article  Google Scholar 

  29. Macrae F, Domingues M, Casini A, Ariëns R (2016) The (patho)physiology of Fibrinogen γ′. Seminars Thromb Hemost 42:344–355. https://doi.org/10.1055/s-0036-1572353

    Article  CAS  Google Scholar 

  30. de Vries JJ, Snoek CJM, Rijken DC, de Maat MPM (2019) Effects of post-translational modifications of fibrinogen on clot formation, clot structure, and Fibrinolysis. Arterioscler Thromb Vasc Biology 40:554–569. https://doi.org/10.1161/atvbaha.119.313626

    Article  Google Scholar 

  31. Medcalf RL (2007) Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5:132–142. https://doi.org/10.1111/j.1538-7836.2007.02464.x

    Article  CAS  PubMed  Google Scholar 

  32. Cesarman-Maus G, Hajjar KA (2005) Molecular mechanisms of fibrinolysis. Brit J Haematol 129:307–321. https://doi.org/10.1111/j.1365-2141.2005.05444.x

    Article  CAS  Google Scholar 

  33. Collet JP, Park D, Lesty C et al (2000) Influence of Fibrin Network Conformation and Fibrin Fiber Diameter on Fibrinolysis Speed. Arterioscler Thromb Vasc Biology 20:1354–1361. https://doi.org/10.1161/01.atv.20.5.1354

    Article  CAS  Google Scholar 

  34. Foley JH, Conway EM (2016) Cross Talk pathways between Coagulation and inflammation. Circ Res 118:1392–1408. https://doi.org/10.1161/circresaha.116.306853

    Article  CAS  PubMed  Google Scholar 

  35. Festa A, D’Agostino R, Tracy RP et al (2002) Elevated Levels of Acute-Phase Proteins and Plasminogen Activator Inhibitor-1 predict the development of type 2 diabetes. Diabetes 51:1131–1137. https://doi.org/10.2337/diabetes.51.4.1131

    Article  CAS  PubMed  Google Scholar 

  36. Okafor ON, Gorog DA (2015) Endogenous fibrinolysis an important mediator of Thrombus formation and Cardiovascular Risk. J Am Coll Cardiol 65:1683–1699. https://doi.org/10.1016/j.jacc.2015.02.040

    Article  CAS  PubMed  Google Scholar 

  37. Spencer FAA Jr. FA (2003) Risk factors for venous thromboembolism. Circulation 107:9I–16. https://doi.org/10.1161/01.cir.0000078469.07362.e6

    Article  Google Scholar 

  38. Bruinstroop E, Klok FA, Ree MAVD et al (2009) Elevated D-dimer levels predict recurrence in patients with idiopathic venous thromboembolism: a meta-analysis. J Thromb Haemost 7:611–618. https://doi.org/10.1111/j.1538-7836.2009.03293.x

    Article  CAS  PubMed  Google Scholar 

  39. van Es N, Takada T, Kraaijpoel N et al (2023) Diagnostic management of acute pulmonary embolism: a prediction model based on a patient data meta-analysis. Eur Hear J 44:3073–3081. https://doi.org/10.1093/eurheartj/ehad417

    Article  Google Scholar 

  40. Tosetto A, Iorio A, Marcucci M et al (2012) Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH). J Thromb Haemost 10:1019–1025. https://doi.org/10.1111/j.1538-7836.2012.04735.x

    Article  CAS  PubMed  Google Scholar 

  41. Eichinger S, Heinze G, Jandeck LM, Kyrle PA (2010) Risk Assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism. Circulation 121:1630–1636. https://doi.org/10.1161/circulationaha.109.925214

    Article  PubMed  Google Scholar 

  42. Wang J, Lim HY, Ho P (2021) Individualised risk assessments for recurrent venous thromboembolism: New frontiers in the era of direct oral anticoagulants. Hemato 2:64–78. https://doi.org/10.3390/hemato2010003

    Article  Google Scholar 

  43. Weitz JI, Fredenburgh JC, Eikelboom JW (2017) A test in Context: D-Dimer. J Am Coll Cardiol 70:2411–2420. https://doi.org/10.1016/j.jacc.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  44. de Wit K, Al-Haimus F, Hu Y et al (2023) Comparison of YEARS and adjust-unlikely D-dimer testing for Pulmonary Embolism in the Emergency Department. Ann Emerg Med 81:558–565. https://doi.org/10.1016/j.annemergmed.2022.09.014

    Article  PubMed  Google Scholar 

  45. Palareti G, Cosmi B, Legnani C et al (2014) D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study. Blood 124:196–203. https://doi.org/10.1182/blood-2014-01-548065

    Article  CAS  PubMed  Google Scholar 

  46. Khan F, Tritschler T, Kimpton M et al (2021) Long-term risk for major bleeding during extended oral anticoagulant therapy for first unprovoked venous thromboembolism: a systematic review and Meta-analysis. Ann Intern Med 174:1420–1429. https://doi.org/10.7326/m21-1094

    Article  PubMed  Google Scholar 

  47. Kleinegris M-C, Cate H, ten Cate-Hoek A (2013) D-dimer as a marker for cardiovascular and arterial thrombotic events in patients with peripheral arterial disease. Thromb Haemost 110:233–243. https://doi.org/10.1160/th13-01-0032

    Article  CAS  PubMed  Google Scholar 

  48. Longstaff C (2018) Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost 16:652–662. https://doi.org/10.1111/jth.13957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meltzer ME, Lisman T, de Groot PG et al (2010) Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 116:113–121. https://doi.org/10.1182/blood-2010-02-267740

    Article  CAS  PubMed  Google Scholar 

  50. Belcher HA, Litwa K, Guthold M, Hudson NE (2022) The applicability of current turbidimetric approaches for analyzing fibrin fibers and other Filamentous Networks. Biomolecules 12:807. https://doi.org/10.3390/biom12060807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He S, Cao H, Thålin C et al (2020) The clotting trigger is an important determinant for the Coagulation pathway in vivo or in Vitro—Inference from Data Review. Semin Thromb Hemost 47:063–073. https://doi.org/10.1055/s-0040-1718888

    Article  CAS  Google Scholar 

  52. Wolberg AS, Gabriel DA, Hoffman M (2002) Analyzing fibrin clot structure using a microplate reader. Blood Coagul Fibrin 13:533–539. https://doi.org/10.1097/00001721-200209000-00008

    Article  CAS  Google Scholar 

  53. He S, Bremme K, Blombäck M (1999) A Laboratory Method for determination of overall haemostatic potential in plasma. I. Method Design and preliminary results. Thromb Res 96:145–156. https://doi.org/10.1016/s0049-3848(99)00092-4

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Lim HY, Nandurkar H, Ho P (2022) Age, sex and racial differences in fibrin formation and fibrinolysis within the healthy population. Blood Coagul Fibrin 33:141–144. https://doi.org/10.1097/mbc.0000000000001115

    Article  CAS  Google Scholar 

  55. He S, Zhu K, Skeppholm M et al (2007) A global assay of haemostasis which uses recombinant tissue factor and tissue-type plasminogen activator to measure the rate of fibrin formation and fibrin degradation in plasma. Thromb Haemostasis 98:871–882

    Article  CAS  Google Scholar 

  56. Curnow JL, Morel-Kopp M‐C., Roddie C et al (2007) Reduced fibrinolysis and increased fibrin generation can be detected in hypercoagulable patients using the overall hemostatic potential assay. J Thromb Haemost 5:528–534. https://doi.org/10.1111/j.1538-7836.2007.02362.x

    Article  CAS  PubMed  Google Scholar 

  57. He S, Antovic A, research MBT (2001) (2001) A simple and rapid laboratory method for determination of haemostasis potential in plasma: II. Modifications for use in routine laboratories and research work. Elsevier 103:355–361. https://doi.org/10.1016/s0049-3848(01)00332-2

  58. Mari D, Ogliari G, Castaldi D et al (2008) Hemostasis and ageing. Immun Ageing 5:12. https://doi.org/10.1186/1742-4933-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosendaal FR, Helmerhorst FM, Vandenbroucke JP (2002) Female hormones and thrombosis. Arterioscler Thromb Vasc Biology 22:201–210. https://doi.org/10.1161/hq0202.102318

    Article  CAS  Google Scholar 

  61. Kannel WB, D’Agostino RB, Belanger AJ (1992) Update on fibrinogen as a cardiovascular risk factor. Ann Epidemiol 2:457–466. https://doi.org/10.1016/1047-2797(92)90095-8

    Article  CAS  PubMed  Google Scholar 

  62. Meijers J, Middeldorp S, Tekelenburg W et al (2000) Increased fibrinolytic activity during use of oral contraceptives is counteracted by an enhanced factor XI-independent down Regulation of Fibrinolysis. Thromb Haemostasis 84:9–14. https://doi.org/10.1055/s-0037-1613959

    Article  CAS  Google Scholar 

  63. Arnesen CAL, Veres K, Horváth-Puhó E et al (2022) Estimated lifetime risk of venous thromboembolism in men and women in a Danish nationwide cohort: impact of competing risk of death. Eur J Epidemiol 37:195–203. https://doi.org/10.1007/s10654-021-00813-w

    Article  PubMed  Google Scholar 

  64. Roy-O’Reilly M, McCullough LD (2014) Sex differences in stroke: the contribution of coagulation. Exp Neurol 259:16–27. https://doi.org/10.1016/j.expneurol.2014.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McLeod B, Lim HY, Nandurkar H et al (2022) Overall hemostatic potential assay detects risk of progression to post-thrombotic syndrome in anticoagulated patients following deep vein thrombosis. Diagnostics 12:3165. https://doi.org/10.3390/diagnostics12123165

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lim HY, Lui B, Tacey M et al (2021) Global coagulation assays in patients with diabetes mellitus. Res Pract Thromb Haemostasis 5:e12611. https://doi.org/10.1002/rth2.12611

    Article  CAS  Google Scholar 

  67. Chow V, Reddel C, Pennings G et al (2015) Persistent global hypercoagulability in long-term survivors of acute pulmonary embolism. Blood Coagul Fibrin 26:537–544. https://doi.org/10.1097/mbc.0000000000000285

    Article  CAS  Google Scholar 

  68. Antovic A, Blombäck M, Bremme K et al (2003) Increased hemostasis potential persists in women with previous thromboembolism with or without APC resistance. J Thromb Haemost 1:2531–2535. https://doi.org/10.1111/j.1538-7836.2003.00451.x

    Article  CAS  PubMed  Google Scholar 

  69. Drabik L, Konieczyńska M, Undas A (2020) Clot lysis time predicts Stroke during Anticoagulant Therapy in patients with Atrial Fibrillation. Can J Cardiol 36:119–126. https://doi.org/10.1016/j.cjca.2019.08.001

    Article  PubMed  Google Scholar 

  70. Wang J, Lim HY, Nandurkar H, Ho P (2023) DOAC-stop can remove direct oral anticoagulants and allow analysis by global coagulation assays. Int J Lab Hematol. https://doi.org/10.1111/ijlh.14020

    Article  PubMed  Google Scholar 

  71. Kahn SR (2016) The post-thrombotic syndrome. Hematology 2016:413–418. https://doi.org/10.1182/asheducation-2016.1.413

    Article  PubMed  PubMed Central  Google Scholar 

  72. Prandoni P (2012) Healthcare burden associated with the post-thrombotic syndrome and potential impact of the new oral anticoagulants. Eur J Haematol 88:185–194. https://doi.org/10.1111/j.1600-0609.2011.01733.x

    Article  CAS  PubMed  Google Scholar 

  73. Kahn SR, Shapiro S, Wells PS et al (2014) Compression stockings to prevent post-thrombotic syndrome: a randomised placebo-controlled trial. Lancet 383:880–888. https://doi.org/10.1016/s0140-6736(13)61902-9

    Article  PubMed  Google Scholar 

  74. Vedantham S, Goldhaber SZ, Julian JA et al (2017) Pharmacomechanical Catheter-Directed Thrombolysis for Deep-Vein Thrombosis. New Engl J Med 377:2240–2252. https://doi.org/10.1056/nejmoa1615066

    Article  PubMed  Google Scholar 

  75. Kearon C, Gu C-S, Julian J et al (2019) Pharmacomechanical Catheter-Directed Thrombolysis in Acute femoral–popliteal deep vein thrombosis: analysis from a stratified Randomized Trial. Thromb Haemostasis 119:633–644. https://doi.org/10.1055/s-0039-1677795

    Article  Google Scholar 

  76. Kattula S, Byrnes JR, Wolberg AS (2018) Fibrinogen and fibrin in Hemostasis and thrombosis. Arterioscler Thromb Vasc Biology 37:e13–e21. https://doi.org/10.1161/atvbaha.117.308564

    Article  Google Scholar 

  77. Sumaya W, Wallentin L, James SK et al (2018) Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy. Eur Hear J 39:1078–1085. https://doi.org/10.1093/eurheartj/ehy013

    Article  CAS  Google Scholar 

  78. Farag M, Spinthakis N, Gue YX et al (2018) Impaired endogenous fibrinolysis in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention is a predictor of recurrent cardiovascular events: the RISK PPCI study. Eur Heart J 40:295–305. https://doi.org/10.1093/eurheartj/ehy656

    Article  CAS  Google Scholar 

  79. Crowther MA, Roberts J, Roberts R et al (2001) Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective cohort study. Thromb Haemostasis 85:390–394

    Article  CAS  Google Scholar 

  80. Undas A (2021) Fibrinolysis in venous thromboembolism. Semin Thromb Hemost 47:480–489. https://doi.org/10.1055/s-0041-1725094

    Article  CAS  PubMed  Google Scholar 

  81. Gorog DA, Lip GYH (2019) Impaired Spontaneous/Endogenous fibrinolytic status as New Cardiovascular Risk factor? JACC Review Topic of the Week. J Am Coll Cardiol 74:1366–1375. https://doi.org/10.1016/j.jacc.2019.07.030

    Article  CAS  PubMed  Google Scholar 

  82. Harahsheh Y, Ho KM (2018) Use of viscoelastic tests to predict clinical thromboembolic events: a systematic review and meta-analysis. Eur J Haematol 100:113–123. https://doi.org/10.1111/ejh.12992

    Article  PubMed  Google Scholar 

  83. Yamamoto J, Yamashita T, Ikarugi H et al (2003) Görög thrombosis test. Blood Coagul Fibrinolysis 14:31–39. https://doi.org/10.1097/01.mbc.0000046170.06450.9b

    Article  CAS  PubMed  Google Scholar 

  84. Edfors F, Iglesias MJ, Butler LM, Odeberg J (2022) Proteomics in thrombosis research. Res Pr Thromb Haemost 6:e12706. https://doi.org/10.1002/rth2.12706

    Article  CAS  Google Scholar 

  85. Quintero M, Tasic L, Annichino-Bizzacchi JM (2020) Thrombosis: current knowledge based on metabolomics by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Thromb Updat 1:100011. https://doi.org/10.1016/j.tru.2020.100011

    Article  Google Scholar 

  86. Atkins CG, Buckley K, Blades MW, Turner RFB (2016) Raman Spectroscopy of Blood and Blood Components. Appl Spectrosc 71:767–793. https://doi.org/10.1177/0003702816686593

    Article  CAS  Google Scholar 

  87. Blombäck B, Carlsson K, Hessel B et al (1989) Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Et Biophys Acta Bba - Protein Struct Mol Enzym 997:96–110. https://doi.org/10.1016/0167-4838(89)90140-4

    Article  Google Scholar 

  88. Hugenholtz GCG, Macrae F, Adelmeijer J et al (2016) Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen. J Thromb Haemost 14:1054–1066. https://doi.org/10.1111/jth.13278

    Article  CAS  PubMed  Google Scholar 

  89. Becatti M, Mannucci A, Argento FR et al (2020) Super-resolution Microscopy reveals an altered Fibrin Network in cirrhosis: the key role of oxidative stress in fibrinogen structural modifications. Antioxidants 9:737. https://doi.org/10.3390/antiox9080737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonaventura A, Vecchié A, Dagna L et al (2021) Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 21:319–329. https://doi.org/10.1038/s41577-021-00536-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Investigators A, Investigators A- 4a, Investigators R-C et al (2021) Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. New Engl J Med 385:NEJMoa2105911. https://doi.org/10.1056/nejmoa2105911

    Article  CAS  Google Scholar 

  92. Spyropoulos AC, Goldin M, Giannis D et al (2021) Efficacy and safety of therapeutic-dose heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-risk hospitalized patients with COVID-19. Jama Intern Med 181. https://doi.org/10.1001/jamainternmed.2021.6203

  93. Sholzberg M, Tang GH, Rahhal H et al (2021) Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ 375:n2400. https://doi.org/10.1136/bmj.n2400

    Article  PubMed  Google Scholar 

  94. Dronkers CEA, Mol GC, Maraziti G et al (2018) Predicting Post-thrombotic Syndrome with Ultrasonographic Follow-Up after deep vein thrombosis: a systematic review and Meta-analysis. Thromb Haemostasis 118:1428–1438. https://doi.org/10.1055/s-0038-1666859

    Article  CAS  Google Scholar 

  95. Bergan JJ, Schmid-Schönbein GW, Smith PDC et al (2006) Chronic venous disease. New Engl J Med 355:488–498. https://doi.org/10.1056/nejmra055289

    Article  CAS  PubMed  Google Scholar 

  96. Passerini AG, Milsted A, Rittgers SE (2003) Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg 37:182–190. https://doi.org/10.1067/mva.2003.66

    Article  PubMed  Google Scholar 

  97. Chandrashekar A, Garry J, Gasparis A, Labropoulos N (2017) Vein wall remodeling in patients with acute deep vein thrombosis and chronic postthrombotic changes. J Thromb Haemost 15:1989–1993. https://doi.org/10.1111/jth.13793

    Article  CAS  PubMed  Google Scholar 

  98. Rabinovich A, Cohen JM, Kahn SR (2015) Predictive value of markers of inflammation in the postthrombotic syndrome: a systematic review inflammatory biomarkers and PTS. Thromb Res 136:289–297. https://doi.org/10.1016/j.thromres.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  99. Bouman AC, Smits JJM, Cate HT, Cate-Hoek AJT (2012) Markers of coagulation, fibrinolysis and inflammation in relation to post‐thrombotic syndrome. J Thromb Haemost 10:1532–1538. https://doi.org/10.1111/j.1538-7836.2012.04798.x

    Article  CAS  PubMed  Google Scholar 

  100. Morrish NJ, Wang S-L, Stevens LK et al (2001) Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 44:S14. https://doi.org/10.1007/pl00002934

    Article  PubMed  Google Scholar 

  101. Colagiuri S, Lee CMY, Wong TY et al (2011) Glycemic thresholds for Diabetes-Specific Retinopathy. Diabetes Care 34:145–150. https://doi.org/10.2337/dc10-1206

    Article  PubMed  Google Scholar 

  102. Group AC, Patel A, MacMahon S et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572. https://doi.org/10.1056/nejmoa0802987

    Article  Google Scholar 

  103. Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139. https://doi.org/10.1056/nejmoa0808431

    Article  CAS  PubMed  Google Scholar 

  104. Group A to CCR in DS, Gerstein HC, Miller ME et al (2008) Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med 358:2545–2559. https://doi.org/10.1056/nejmoa0802743

  105. Kearney K, Tomlinson D, Smith K, Ajjan R (2017) Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol 16:34. https://doi.org/10.1186/s12933-017-0515-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Collaborators G C of, Roth D, Abate GA (2017) D, (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1736–1788. https://doi.org/10.1016/s0140-6736(18)32203-7

  107. Lutz J, Menke J, Sollinger D et al (2014) Haemostasis in chronic kidney disease. Nephrol Dial Transpl 29:29–40. https://doi.org/10.1093/ndt/gft209

    Article  CAS  Google Scholar 

  108. Drawz PE, Baraniuk S, Davis BR et al (2012) Cardiovascular risk assessment: addition of CKD and race to the Framingham equation. Am Hear J 164:925–931e2. https://doi.org/10.1016/j.ahj.2012.09.003

    Article  Google Scholar 

  109. Chang A, Kramer H (2011) Should eGFR and Albuminuria be added to the Framingham risk score chronic kidney Disease and Cardiovascular Disease Risk Prediction. Nephron Clin Pr 119:c171–c178. https://doi.org/10.1159/000325669

    Article  CAS  Google Scholar 

  110. Mackman N, Antoniak S, Wolberg AS et al (2020) Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other Pandemic viruses. Arter Thromb Vasc Biology 40:2033–2044. https://doi.org/10.1161/atvbaha.120.314514

    Article  CAS  Google Scholar 

  111. Wygrecka M, Birnhuber A, Seeliger B et al (2021) Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19. Blood Adv 6:1074–1087. https://doi.org/10.1182/bloodadvances.2021004816

    Article  CAS  Google Scholar 

  112. Lee N, Wang J, Brook R et al (2022) The evaluation of overall hemostatic potential assay in patients with COVID-19 infection. Int J Lab Hematol 44:e219–e223. https://doi.org/10.1111/ijlh.13881

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ho, P., Nandurkar, H. et al. Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases. J Thromb Thrombolysis (2024). https://doi.org/10.1007/s11239-024-02975-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11239-024-02975-2

Keywords

Navigation