Log in

Deep optimized hybrid beamforming intelligent reflecting surface assisted UM-MIMO THz communication for 6G broad band connectivity

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

For 6G communications, the Ultra Massive Multiple Input Multiple Output (UM-MIMO) systems with Intelligent Reflecting Surface (IRS) assistance are capable since they can efficiently get beyond the limitations of restricted blockage and coverage. However, in the far field, a robust THz channel sparsity is unfavorable to spatial multiplexing, whereas excessive UM-MIMO and IRS dimensions extend the near field region. To address these issues, a hybrid beamforming IRS assisted UM-MIMO THz system with Deep Siamese Capsule Network is designed with the cascaded channel. The near and far field codebook-based beamforming is developed to model the proposed communication channel. The channel estimation is done based on the deep siamese capsule adaptive beluga whale neural network. The simulation results of the bit error rate, Normalized Mean Square Error (NMSE), spectral efficiency, sum rate, data rate, normalized channel gain, beamforming gain, and array gain loss shows that the proposed system achieves reliable performances compared with existing techniques. The suggested approach also demonstrates the outstanding adaptability to various network configurations and good scalability. The method provides a better channel estimation accuracy and less complexity which shows an NMSE of − 11.2 dB at an SNR of 10 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Yu, W., Shen, Y., He, H., Yu, X., Song, S., Zhang, J., & Letaief, K. B. (2023). An adaptive and robust deep learning framework for thz ultra-massive MIMO channel estimation. IEEE Journal of Selected Topics in Signal Processing. https://doi.org/10.1109/jstsp.2023.3282832

    Article  Google Scholar 

  2. Tarboush, S., Ali, A., & Al-Naffouri, T. Y. (2023). Compressive estimation of near field channels for Ultra Massive-MIMO wideband the systems. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/icassp49357.2023.10096832

  3. Elbir, A. M., Shi, W., Papazafeiropoulos, A. K., Kourtessis, P., & Chatzinotas, S. (2023). Near-field terahertz communications: Model-based and model-free channel estimation. IEEE Access, 11, 36409–36420. https://doi.org/10.1109/access.2023.3266297

    Article  Google Scholar 

  4. Chen, K., Qi, C., & Wang, C.-X. (2022). Two-stage hybrid-field beam training for ultra-massive MIMO Systems. 2022 IEEE/CIC International Conference on Communications in China (ICCC). https://doi.org/10.1109/iccc55456.2022.9880793

  5. Cai, X., Cheng, X., & Tufvesson, F. (2024). Toward 6G with terahertz communications: Understanding the propagation channels. IEEE Communications Magazine, 62(2), 32–38.

    Article  Google Scholar 

  6. Chen, Y., Yan, L., & Han, C. (2021). Hybrid spherical- and planar-wave modeling and DCNN-powered estimation of terahertz ultra-massive MIMO channels. IEEE Transactions on Communications, 69(10), 7063–7076. https://doi.org/10.1109/tcomm.2021.3098696

    Article  Google Scholar 

  7. Elbir, A. M., Mishra, K. V., & Chatzinotas, S. (2021). Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming. IEEE Journal of Selected Topics in Signal Processing, 15(6), 1468–1483. https://doi.org/10.1109/jstsp.2021.3117410

    Article  Google Scholar 

  8. Ning, B., Tian, Z., Mei, W., Chen, Z., Han, C., Li, S., & Zhang, R. (2023). Beamforming technologies for ultra-massive MIMO in terahertz communications. IEEE Open Journal of the Communications Society, 4, 614–658. https://doi.org/10.1109/ojcoms.2023.3245669

    Article  Google Scholar 

  9. Hu, Z., Chen, Y., & Han, C. (2023). Prince: A pruned AMP Integrated Deep CNN Method for efficient channel estimation of millimeter-wave and terahertz ultra-massive MIMO Systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/twc.2023.3258405

    Article  Google Scholar 

  10. **ao, L., Li, S., Liu, Y., Liu, G., **ao, P., & Jiang, T. (2023). Error probability analysis for ultra-massive MIMO system and near-optimal signal detection. China Communications. https://doi.org/10.23919/jcc.fa.2022-0630.202305

    Article  Google Scholar 

  11. Kim, S., Lee, A., Ju, H., Ngo, K. A., Moon, J., & Shim, B. (2023). Transformer-based channel parameter acquisition for terahertz ultra-massive MIMO Systems. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/tvt.2023.3287530

    Article  Google Scholar 

  12. Yan, L., Han, C., Yang, T., & Yuan, J. (2021). Dynamic-subarray with fixed-true-time-delay architecture for terahertz wideband hybrid beamforming. 2021 IEEE Global Communications Conference (GLOBECOM). https://doi.org/10.1109/globecom46510.2021.9685038

  13. Yan, L., Han, C., & Yuan, J. (2022). Energy-efficient dynamic-subarray with fixed true-time-delay design for terahertz wideband hybrid beamforming. IEEE Journal on Selected Areas in Communications, 40(10), 2840–2854. https://doi.org/10.1109/jsac.2022.3196090

    Article  Google Scholar 

  14. Ranjith, S., Jesu Jayarin, P., & Chandra Sekar, A. (2023). A multi-fusion integrated end-to-end deep kernel CNN based channel estimation for hybrid range UM-MIMO 6G Communication Systems. Applied Acoustics, 210, 109427. https://doi.org/10.1016/j.apacoust.2023.109427

    Article  Google Scholar 

  15. Chen, Y., & Han, C. (2020a). Deep CNN-based spherical-wave channel estimation for terahertz ultra-massive MIMO Systems. GLOBECOM 2020-2020 IEEE Global Communications Conference. https://doi.org/10.1109/globecom42002.2020.9322174

  16. Tarboush, S., Ali, A., & Al-Naffouri, T. Y. (2024). Cross-field channel estimation for ultra massive-MIMO THz systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2024.3352894

    Article  Google Scholar 

  17. Liao, A., Gao, Z., Wang, D., Wang, H., Yin, H., Ng, D. W. K., & Alouini, M. S. (2021). Terahertz ultra-massive MIMO-based aeronautical communications in space-air-ground integrated networks. IEEE Journal on Selected Areas in Communications, 39(6), 1741–1767.

    Article  Google Scholar 

  18. Lee, A., Ju, H., Kim, S., & Shim, B. (2022). Intelligent near-field channel estimation for terahertz ultra-massive MIMO Systems. GLOBECOM 2022-2022 IEEE Global Communications Conference. https://doi.org/10.1109/globecom48099.2022.10001612

  19. Murshed, R. U., Ashraf, Z. B., Hridhon, A. H., Munasinghe, K., Jamalipour, A., & Hossain, Md. F. (2023). A CNN-LSTM-based fusion separation deep neural network for 6G ultra-massive MIMO hybrid beamforming. IEEE Access, 11, 38614–38630. https://doi.org/10.1109/access.2023.3266355

    Article  Google Scholar 

  20. Chen, Z., Han, C., Wu, Y., Li, L., Huang, C., Zhang, Z., & Tong, W. (2021). Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier. IEEE Communications Magazine, 59(11), 66–72.

    Article  Google Scholar 

  21. Singh, P., & Jung, S. Y. (2022). Nanonetworks: Next Frontier in Wireless Communications. In 2022 13th International Conference on Information and Communication Technology Convergence (ICTC) (pp. 685–690). IEEE.

  22. Li, R., Sun, S., Chen, Y., Han, C., & Tao, M. (2022). Ergodic achievable rate analysis and optimization of RIS-assisted millimeter-wave MIMO communication systems. IEEE Transactions on Wireless Communications, 22(2), 972–985.

    Article  Google Scholar 

  23. Moon, S., Kim, H., & Hwang, I. (2020). Deep learning-based channel estimation and tracking for millimeter-wave vehicular communications. Journal of Communications and Networks, 22(3), 177–184. https://doi.org/10.1109/jcn.2020.000012

    Article  Google Scholar 

  24. Elbir, A. M., Shi, W., Papazafeiropoulos, A. K., Kourtessis, P., & Chatzinotas, S. (2023). Terahertz-band channel and beam split estimation via array perturbation model. IEEE Open Journal of the Communications Society, 4, 892–907. https://doi.org/10.1109/ojcoms.2023.3263625

    Article  Google Scholar 

  25. Yan, L., Chen, Y., Han, C., & Yuan, J. (2022). Joint Inter-Path and intra-path multiplexing for terahertz widely-spaced multi-subarray hybrid beamforming systems. IEEE Transactions on Communications, 70(2), 1391–1406. https://doi.org/10.1109/tcomm.2021.3138791

    Article  Google Scholar 

  26. Chen, Y., Li, R., Han, C., Sun, S., & Tao, M. (2023). Hybrid spherical- and Planar-wave channel modeling and estimation for terahertz integrated UM-MIMO and IRS systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/twc.2023.3273221

    Article  Google Scholar 

  27. Han, C., Yan, L., & Yuan, J. (2021). Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems. IEEE Wireless Communications, 28(4), 198–204. https://doi.org/10.1109/mwc.001.2000458

    Article  Google Scholar 

  28. Madhu, G., Govardhan, A., Ravi, V., Kautish, S., Srinivas, B. S., Chaudhary, T., & Kumar, M. (2022). DSCN-net: A Deep Siamese capsule neural network model for automatic diagnosis of malaria parasites detection. Multimedia Tools and Applications, 81(23), 34105–34127. https://doi.org/10.1007/s11042-022-13008-6

    Article  Google Scholar 

  29. Wu, Y., Li, J., Wu, J., & Chang, J. (2020). Siamese capsule networks with global and local features for text classification. Neurocomputing, 390, 88–98. https://doi.org/10.1016/j.neucom.2020.01.064

    Article  Google Scholar 

  30. Zhong, C., Li, G., & Meng, Z. (2022). Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowledge-Based Systems, 251, 109215. https://doi.org/10.1016/j.knosys.2022.109215

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

Corresponding author

Correspondence to Ranjitham Govindasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, R., Nagarajan, S.K., Muthu, J.R. et al. Deep optimized hybrid beamforming intelligent reflecting surface assisted UM-MIMO THz communication for 6G broad band connectivity. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01157-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01157-y

Keywords

Navigation