Log in

Energy-efficient design for green indoor OWC-IoT systems using passive reflective filters and machine learning-assisted quality prediction

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents an energy-efficient design of optical wireless communication (OWC) system for the indoor Internet of Things (IoT) with the assistance of machine learning (ML). A central coordinator (CC) has been proposed to interrogate the IoT devices and control the uplink formations with the prediction of transmission quality using ML classifiers. The passive reflective reflectors (PRF) are utilized in the IoT devices, which replaced the power-consuming active transmitters, formulate the zero-power consuming transmission links. The communication performance of the passive link establishments from the IoT devices have been investigated in terms of quality factor (Q-factor), bit error rate (BER), and signal-to-noise ratio (SNR) under different optical wireless channel conditions and link lengths. The ML classifiers have been evaluated on the prediction of transmission quality, and the results suggested the Euclidean K-nearest neighbor (KNN) with ten number of neighbors for the implementation. The IoT devices located within 1.2 m from the CC require a transmission power of 0.5 mW for links carrying 10 Gbps data, which increases the energy efficiency to 20 Gbps/mW with transmission energy consumption of 0.05 pJ/bit. This significant improvement in energy efficiency and passive communication ensures reliable, and green IoT links suitable for data-intensive indoor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ITU-T (2012). ITU-T Y.2060 - Overview of the Internet of Things. International Telecommunication Union. https://www.itu.int/rec/T-REC-Y.2060-201206-I

  2. Sambo, Y. A., Héliot, F., & Imran, M. A. (2015). A survey and tutorial of electromagnetic radiation and reduction in mobile communication systems. IEEE Communications Surveys and Tutorials, 17(2), 790–802. https://doi.org/10.1109/COMST.2014.2364136

    Article  Google Scholar 

  3. Haas, H., Elmirghani, J., & White, I. (2020). Optical wireless communication. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.https://doi.org/10.1098/rsta.2020.0051

    Article  Google Scholar 

  4. Demirkol, I., Camps-Mur, D., Paradells, J., Combalia, M., Popoola, W., & Haas, H. (2019). Powering the internet of things through light communication. IEEE Communications Magazine, 57(6), 107–113. https://doi.org/10.1109/MCOM.2019.1800429

    Article  Google Scholar 

  5. Chen, C., Fu, S., Jian, X., Liu, M., Deng, X., & Ding, Z. (2021). NOMA for energy-efficient lifi-enabled bidirectional IoT communication. IEEE Transactions on Communications, 69(3), 1693–1706. https://doi.org/10.1109/TCOMM.2021.3051912

    Article  Google Scholar 

  6. Chellam, J., & Jeyachitra, R. K. (2020). Energy-efficient bi-directional visible light communication using thin-film corner cube retroreflector for self-sustainable IoT. IET Optoelectronics, 14(5), 223–233. https://doi.org/10.1049/iet-opt.2019.0086

    Article  Google Scholar 

  7. Jenila, C., & Jeyachitra, K. R. Design of green indoor IoT networking through optical wireless communication using passive optical reflectors. In 2018 International Conference on Recent Advances in Intelligent Computational Systems (RAICS) (pp. 159-163). IEEE. https://doi.org/10.1109/RAICS.2018.8635049

  8. Shi, Z., **e, X., Lu, H., Yang, H., Kadoch, M., & Cheriet, M. (2021). Deep reinforcement learning based spectrum resource management for industrial internet of things. IEEE Internet of Things Journal, 8(5), 3476–3489. https://doi.org/10.1109/JIOT.2020.3022861

    Article  Google Scholar 

  9. Scifres, D. R. (2000). Infrared laser diode wireless local area network. Google Patents. https://patents.google.com/patent/US6025942

  10. Mukhtar, S., **aobin, S., Ashry, I., Ng, T. K., Ooi, B. S., & Khan, M. Z. M. (2020). Tunable violet laser diode system for optical wireless communication. IEEE Photonics Technology Letters, 32(9), 546–549. https://doi.org/10.1109/LPT.2020.2983548

    Article  Google Scholar 

  11. ITU-T. (2020). ITU-T L.1470-Greenhouse gas emissions trajectories for the information and communication technology. International Telecommunication Union. https://www.itu.int/rec/T-REC-L.1470-202 001-I/en

  12. Chiaroni, D., Amalfi, R. L., George, J., & Riegel, M. (2023). Towards greener digital infrastructures for ICT and vertical markets. Annals of Telecommunications, 78, 255–275. https://doi.org/10.1007/s12243-023-00961-y

    Article  Google Scholar 

  13. Jenila, C., & Jeyachitra, R. K. (2021). Green indoor optical wireless communication systems: Pathway towards pervasive deployment. Digital Communication Networks, 7(3), 410–444. https://doi.org/10.1016/j.dcan.2020.09.004

    Article  Google Scholar 

  14. Jeyachitra, R. K., & Manochandar, S. (2023). Machine learning and deep learning: Classification and regression problems, recurrent neural networks, convolutional neural networks. Multimodal Biometric and Machine Learning Technologies: Applications for Computer Vision. https://doi.org/10.1002/9781119785491.ch10

    Article  Google Scholar 

  15. Blanc, G., Liu, Y., Lu, R., Takahashi, T., & Zhang, Z. (2022). Interactions between artificial intelligence and cybersecurity to protect future networks. Annals of Telecommunications, 77, 727–729. https://doi.org/10.1007/s12243-022-00935-6

    Article  Google Scholar 

  16. Ogbebor, J. O., Imoize, A. L., & Atayero, A.A.-A. (2020). Energy efficient design techniques in next-generation wireless communication networks: Emerging trends and future directions. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/7235362

    Article  Google Scholar 

  17. Banerjee, D., Muldrey, B., Wang, X., Sen, S., & Chatterjee, A. (2017). Self-learning RF receiver systems: Process aware real-time adaptation to channel conditions for low power operation. IEEE Transactions on Circuits and Systems-II, 64(1), 195–207. https://doi.org/10.1109/TCSI.2016.2608962

    Article  Google Scholar 

  18. Zappone, A., Di Renzo, M., & Debbah, M. (2019). Wireless networks design in the era of deep learning: Model-based, AI-based, or both? IEEE Transactions on Communications, 67(10), 7331–7376. https://doi.org/10.1109/TCOMM.2019.2924010

    Article  Google Scholar 

  19. **a, M., Owada, Y., Inoue, M., & Harai, H. (2012). Optical and wireless hybrid access networks: Design and optimization. IEEE/OSA Journal of Optical Communications and Networking, 4(10), 749–759. https://doi.org/10.1364/JOCN.4.000749

    Article  Google Scholar 

  20. Morais, R. M., & Pedro, J. (2018). Machine learning models for estimating quality of transmission in DWDM networks. IEEE/OSA Journal of Optical Communications and Networking, 10(10), D84–D99. https://doi.org/10.1364/JOCN.10.000D84

    Article  Google Scholar 

  21. Frometa Fonseca, D., Genoves Guzman, B., & Luca Martena, G. (2024). Prediction-model-assisted reinforcement learning algorithm for handover decision-making in hybrid LiFi and WiFi networks. Journal of Optical Communications and Networking, 16(2), 159–170. https://doi.org/10.1364/JOCN.495234

    Article  Google Scholar 

  22. Tang, Z., Guo, S., Li, P., Miyazaki, T., **, H., & Liao, X. (2015). Energy-efficient transmission scheduling in mobile phones using machine learning and participatory sensing. IEEE Transactions on Vehicular Technology, 64(7), 3167–3176. https://doi.org/10.1109/TVT.2014.2350510

    Article  Google Scholar 

  23. He, C., & Ali, W. (2023). Advances in visible light communication. Photonics, 10(11), 1277. https://doi.org/10.3390/photonics10111277

    Article  Google Scholar 

  24. Sejan, M. A. S., Rahman, M. H., Aziz, M. A., Kim, D.-S., You, Y.-H., & Song, H.-K. (2023). A comprehensive survey on MIMO visible light communication: Current research. Machine Learning and Future Trends. Sensors, 23(2), 739. https://doi.org/10.3390/s23020739

    Article  Google Scholar 

  25. Saxena, V. N., Dwivedi, V. K., & Gupta, J. (2023). Machine learning in visible light communication system: A survey. Wireless Communications and Mobile Computing, 2023, 3950657. https://doi.org/10.1155/2023/3950657

    Article  Google Scholar 

  26. Sun, H. (2015). A Practical Guide to Handling Laser Diode Beams. Dordrecht: Springer.

    Book  Google Scholar 

  27. Keiser, G. (2003). Optical Fiber Communications. Wiley Encyclopedia of Telecommunications. Hoboken: Wiley Online Library.

    Google Scholar 

  28. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2019). Optical Wireless Communications: System and Channel Modelling with MATLAB®. Cambridge: CRC Press.

    Book  Google Scholar 

  29. Alpaydin, E. (2020). Introduction to Machine Learning. Cambridge: MIT Press.

    Google Scholar 

  30. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications Magazine, 24(2), 98–105. https://doi.org/10.1109/MWC.2016.1500356WC

    Article  Google Scholar 

  31. Donohoo, B. K., Ohlsen, C., Pasricha, S., **ang, Y., & Anderson, C. (2014). Context-aware energy enhancements for smart mobile devices. IEEE Transactions on Mobile Computing, 13(8), 1720–1732. https://doi.org/10.1109/TMC.2013.94

    Article  Google Scholar 

  32. Aleksić, S. (2013). Energy-efficient communication networks for improved global energy productivity. Springer Telecommunication Systems, 54(2), 183–199. https://doi.org/10.1007/s11235-013-9726-x

    Article  Google Scholar 

  33. Haus, M., Ding, A. Y., Wang, Q., Toivonen, J., Tonetto, L., Tarkoma, S., & Ott, J. Enhancing indoor IoT communication with visible light and ultrasound. In 2019 International Conference on Communications (ICC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICC.2019.8762001

  34. Che, F., Wu, L., Hussain, B., Li, X., & Yue, C. P. (2016). A fully integrated IEEE 802.15.7 visible light communication transmitter with on-chip 8-W 85% efficiency boost LED driver. IEEE Journal of Lightwave Technology, 34(10), 2419–2430. https://doi.org/10.1109/JLT.2016.2535319

    Article  Google Scholar 

  35. Bahashwan, A. A., Anbar, M., Abdullah, N., Al-Hadhrami, T., & Hanshi, S. M. (2021). Review on common iot communication technologies for both long-range network (LPWAN) and short-range network. In F. Saeed, T. Al-Hadhrami, F. Mohammed, & E. Mohammed (Eds.), Advances on Smart and Soft Computing (pp. 341–353). Singapore: Springer. https://doi.org/10.1007/978-981-15-6048-4_30

  36. Alsharif, M. H., Jahid, A., Kelechi, A. H., & Kannadasan, R. (2023). Green IoT: A review and future research directions. Symmetry, 15(3), 757. https://doi.org/10.3390/sym15030757

    Article  Google Scholar 

  37. Ghiasi, S. K., Zamalloa, M. A. Z., & Langendoen, K. A principled design for passive light communication. In 2021 27th Annual International Conference on Mobile Computing and Networking, (pp. 121–133). ACM. https://doi.org/10.1145/3447993.3448629

  38. Kamalakis, T., Ghassemlooy, Z., Zvanovec, S., & Nero Alves, L. (2022). Analysis and simulation of a hybrid visible-light/infrared optical wireless network for IoT applications. Journal of Optical Communications and Networking, 14(3), 69–78. https://doi.org/10.1364/JOCN.442787

    Article  Google Scholar 

  39. Gupta, G., & Balyan, V. (2023). Hybrid backscatter communication for IoT devices in remote areas. Elsevier Heliyon, 9(12), e22880. https://doi.org/10.1016/j.heliyon.2023.e22880

    Article  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the R &D work undertaken project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Funding

This publication was supported by the Visvesvaraya PhD Scheme (Grant No. Ph.D-MLA/4(16)) of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Contributions

Jenila C and R. K. Jeyachitra conceptualized the research work, framed the methodology, and carried out the work and analysis. Both have contributed in manuscript writing and reviewing.

Corresponding author

Correspondence to R. K. Jeyachitra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenila, C., Jeyachitra, R.K. Energy-efficient design for green indoor OWC-IoT systems using passive reflective filters and machine learning-assisted quality prediction. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01139-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01139-0

Keywords

Navigation