Log in

On the Continuity of the Tangent Cone to the Determinantal Variety

  • Original research
  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2022

This article has been updated

Abstract

Tangent and normal cones play an important role in constrained optimization to describe admissible search directions and, in particular, to formulate optimality conditions. They notably appear in various recent algorithms for both smooth and nonsmooth low-rank optimization where the feasible set is the set \(\mathbb {R}_{\le r}^{m \times n}\) of all m × n real matrices of rank at most r. In this paper, motivated by the convergence analysis of such algorithms, we study, by computing inner and outer limits, the continuity of the correspondence that maps each \(X \in \mathbb {R}_{\le r}^{m \times n}\) to the tangent cone to \(\mathbb {R}_{\le r}^{m \times n}\) at X. We also deduce results about the continuity of the corresponding normal cone correspondence. Finally, we show that our results include as a particular case the a-regularity of the Whitney stratification of \(\mathbb {R}_{\le r}^{m \times n}\) following from the fact that this set is a real algebraic variety, called the real determinantal variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Absil, P. A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  2. Bendokat, T., Zimmermann, R., Absil, P. A.: A grassmann manifold handbook: basic geometry and computational aspects. Tech rep (2020)

  3. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936). https://doi.org/10.1007/BF02288367

    Article  Google Scholar 

  4. Ferrer, J., García, M. I., Puerta, F.: Differentiable families of subspaces. Linear Algebra Appl. 199, 229–252 (1994). https://doi.org/10.1016/0024-3795(94)90351-4

    Article  MathSciNet  Google Scholar 

  5. Ha, W., Liu, H., Foygel Barber, R.: An equivalence between critical points for rank constraints versus low-rank factorizations. SIAM J. Optim. 30 (4), 2927–2955 (2020). https://doi.org/10.1137/18M1231675

    Article  MathSciNet  Google Scholar 

  6. Harris, J.: Algebraic geometry graduate texts in mathematics, vol. 133. Springer, New York (1992)

    Google Scholar 

  7. Helmke, U., Shayman, M. A.: Critical points of matrix least squares distance functions. Liner Algebra Appl. 215, 1–19 (1995). https://doi.org/10.1016/0024-3795(93)00070-G

    Article  MathSciNet  Google Scholar 

  8. Hosseini, S., Luke, D.R., Uschmajew, A.: Nonsmooth optimization and its applications, international series of numerical mathematics, vol. 170, pp 45–53. Birkhäuser, Cham (2019). https://doi.org/10.1007/978-3-030-11370-4_3

    Book  Google Scholar 

  9. Hosseini, S., Uschmajew, A.: A gradient sampling method on algebraic varieties and application to nonsmooth low-rank optimization. SIAM J. Optim. 29 (4), 2853–2880 (2019). https://doi.org/10.1137/17M1153571

    Article  MathSciNet  Google Scholar 

  10. Li, X., Song, W., **u, N.: Optimality conditions for rank-constrained matrix optimization. J. Oper. Res. Soc. China 7(2), 285–301 (2019). https://doi.org/10.1007/s40305-019-00245-0

    Article  MathSciNet  Google Scholar 

  11. Mordukhovich, B. S.: Variational analysis and generalized differentiation I, Grundlehren der mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  12. Rockafellar, R. T., Wets, R. J. B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin. Corrected 3rd printing 2009 (1998)

  13. Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015). https://doi.org/10.1137/140957822

    Article  MathSciNet  Google Scholar 

  14. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81(3), 496–549 (1965)

    Article  MathSciNet  Google Scholar 

  15. Willem, M.: Functional analysis: fundamentals and applications. Cornerstones. Basel, Birkhäuser Basel (2013)

    Book  Google Scholar 

  16. Ye, K., Lim, L. H.: Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix Anal. App 37(3), 1176–1197 (2016). https://doi.org/10.1137/15M1054201

    Article  MathSciNet  Google Scholar 

  17. Zhou, G., Huang, W., Gallivan, K. A., Van Dooren, P., Absil, P. A.: A Riemannian rank-adaptive method for low-rank optimization. Neurocomputing 192, 72–80 (2016). https://doi.org/10.1016/j.neucom.2016.02.030

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no 30468160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Olikier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olikier, G., Absil, PA. On the Continuity of the Tangent Cone to the Determinantal Variety. Set-Valued Var. Anal 30, 769–788 (2022). https://doi.org/10.1007/s11228-021-00618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-021-00618-9

Keywords

Mathematics Subject Classification (2010)

Navigation