Log in

Application of an extrapolation method in the Hessenberg algorithm for computing PageRank

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

PageRank can be viewed as a hyperlink-based method for estimating the importance of nodes in a network, and has attracted a lot of attention from researchers. In this paper, we first propose an extrapolation procedure for PageRank vector estimation based on the linear combination of the Ritz values computed from the Hessenberg process and eigenvectors from the classical power method. In order to improve the convergence rate of the PageRank computations, the extrapolation procedure is introduced into the Hessenberg-type algorithm by Gu et al. (Numer. Algorithms, 89(4): 1845–1863, 2022), then a new algorithm is derived and named Hessenberg-extrapolation algorithm whose convergence and construction are investigated in detail. In addition, we further analyze the convergence of the Hessenberg-type algorithm and discuss the relationship between the approximate vectors of the Hessenberg-type algorithm and the Arnoldi-type algorithm. Numerical experiments on several examples demonstrate that our presented algorithm has great potential in PageRank approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The source code of our paper is available at https://github.com/smallmoon619/Hess-ext-PageRank.

References

  1. Page L, Brin S, Motwani R, Winograd T, et al. (1999) The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, Stanford University, Stanford, CA, 17 pages. Available online at http://ilpubs.stanford.edu:8090/422/

  2. Kapusta J, Munk M, Drlik M (2018) Website structure improvement based on the combination of selected web usage mining methods. Int J Inf Technol Decis Mak 17:1743–1776. https://doi.org/10.1142/S0219622018500402

    Article  Google Scholar 

  3. Langville AN, Meyer CD (2005) A survey of eigenvector methods for web information retrieval. SIAM Rev 47(1):135–161. https://doi.org/10.1137/S0036144503424786

    Article  MathSciNet  Google Scholar 

  4. Langville AN, Meyer CD (2004) Deeper inside PageRank. Internet Math 1(3):335–380

    Article  MathSciNet  Google Scholar 

  5. Berkhin P (2005) A survey on PageRank computing. Internet Math 2(1):73–120

    Article  MathSciNet  Google Scholar 

  6. Langville AN, Meyer CD (2006) Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton, NJ. https://doi.org/10.1007/BF02985759

    Book  Google Scholar 

  7. Cicone A, Serra-Capizzano S (2010) Google PageRanking problem: The model and the analysis. J. Comput. Appl. Math. 11:3140–3169. https://doi.org/10.1016/j.cam.2010.02.005

    Article  MathSciNet  Google Scholar 

  8. Haveliwala T, Kamvar S, Klein D, Manning C, Golub G (2003) Computing PageRank using power extrapolation. Informe técnico. Available online at http://ilpubs.stanford.edu:8090/605/

  9. Kamvar S, Haveliwala T, Klein D, Manning C, Golub G (2003) Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th International World Wide Web Conference (WWW’03), pp. 261–270. ACM, New York, NY, USA. https://doi.org/10.1145/775152.775190

  10. Pu B-Y, Huang T-Z, Wen C (2014) A preconditioned and extrapolation accelerated GMRES method for PageRank. Appl Math Lett 37:95–100. https://doi.org/10.1016/j.aml.2014.05.017

    Article  MathSciNet  Google Scholar 

  11. Tan X-Y (2017) A new extrapolation method for PageRank computations. J Comput Appl Math 313:383–392. https://doi.org/10.1016/j.cam.2016.08.034

    Article  MathSciNet  Google Scholar 

  12. Brezinski C, Redivo-Zaglia M (2006) The PageRank vector: properties, computation, approximation, and acceleration. SIAM J Matrix Anal Appl 28(2):551–575. https://doi.org/10.1137/050626612

    Article  MathSciNet  Google Scholar 

  13. Sidi A (2008) Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations. Comput Math Appl 56(1):1–24. https://doi.org/10.1016/j.camwa.2007.11.027

    Article  MathSciNet  Google Scholar 

  14. Wen C, Huang T-Z, Shen Z-L (2017) A note on the two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 315:87–97. https://doi.org/10.1016/j.cam.2016.10.020

    Article  MathSciNet  Google Scholar 

  15. Gu C-Q, Wang L (2013) On the multi-splitting iteration method for computing PageRank. J Appl Math Comput 42:479–490. https://doi.org/10.1007/s12190-013-0645-5

    Article  MathSciNet  Google Scholar 

  16. Gu C-Q, **e F, Zhang K (2015) A two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 278:19–28. https://doi.org/10.1016/j.cam.2016.10.020

    Article  MathSciNet  Google Scholar 

  17. Bai Z-Z (2012) On convergence of the inner-outer iteration method for computing PageRank. Numer Algebra Control Optim 2(4):855–862. https://doi.org/10.3934/naco.2012.2.855

    Article  MathSciNet  Google Scholar 

  18. Tian Z-L, Liu Y, Zhang Y, Liu Z-Y, Tian M-Y (2019) The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl Math Comput 356:479–501. https://doi.org/10.1016/j.amc.2019.02.066

    Article  MathSciNet  Google Scholar 

  19. Wen C, Hu Q-Y, Shen Z-L (2023) An adaptively preconditioned multi-step matrix splitting iteration for computing PageRank. Numer Algorithms 92:1213–1231. https://doi.org/10.1007/s11075-022-01337-4

    Article  MathSciNet  Google Scholar 

  20. Gleich DF, Gray AP, Greif C, Lau T (2010) An inner-outer iteration for computing PageRank. SIAM J Sci Comput 32(1):349–371. https://doi.org/10.1137/080727397

    Article  MathSciNet  Google Scholar 

  21. Kamvar S, Haveliwala T, Golub G (2004) Adaptive methods for the computation of PageRank. Linear Algebra Appl 386:51–65. https://doi.org/10.1016/j.laa.2003.12.008

    Article  MathSciNet  Google Scholar 

  22. Ipsen IC, Selee TM (2007) PageRank computation, with special attention to dangling nodes. SIAM J Matrix Anal Appl 29(4):1281–1296. https://doi.org/10.1137/060664331

    Article  MathSciNet  Google Scholar 

  23. Lin Y-Q, Shi X-H, Wei Y-M (2009) On computing PageRank via lum** the Google matrix. J Comput Appl Math 224:702–708. https://doi.org/10.1016/j.cam.2008.06.003

    Article  MathSciNet  Google Scholar 

  24. Yu Q, Miao Z-K, Wu G, Wei Y-M (2012) Lum** algorithms for computing Google’s PageRank and its derivative with attention to unreferenced nodes. Inf Retr 15:503–526. https://doi.org/10.1007/s10791-012-9183-2

    Article  Google Scholar 

  25. Avrachenkov K, Litvak N, Nemirovsky D, Osipova N (2017) Monte Carlo methods in PageRank computation: when one iteration is sufficient. SIAM J Numer Anal 45:890–904

    Article  MathSciNet  Google Scholar 

  26. Liu W, Li G, Cheng J (2015) Fast PageRank approximation by adaptive sampling. Knowl Inf Syst 42:127–146

    Article  Google Scholar 

  27. Golub GH, Greif C (2006) An Arnoldi-type algorithm for computing PageRank. BIT 46:759–771

    Article  MathSciNet  Google Scholar 

  28. Wu G, Wei Y-M (2010) An Arnoldi-Extrapolation algorithm for computing PageRank. J Comput Appl Math 234:3196–3212. https://doi.org/10.1016/j.cam.2010.02.009

    Article  MathSciNet  Google Scholar 

  29. Wu G, Wei Y-M (2007) A Power-Arnoldi algorithm for computing PageRank. Numer Linear Algebra Appl 14:521–546. https://doi.org/10.1002/nla.531

    Article  MathSciNet  Google Scholar 

  30. Hu Q-Y, Wen C, Huang T-Z, Shen Z-L, Gu X-M (2021) A variant of the Power-Arnoldi algorithm for computing PageRank. J Comput Appl Math 381:113034. https://doi.org/10.1016/j.cam.2020.113034

    Article  MathSciNet  Google Scholar 

  31. Yin J-F, Yin G-J, Ng M (2012) On adaptively accelerated Arnoldi method for computing PageRank. Numer Linear Algebra Appl 19:73–85. https://doi.org/10.1002/nla.789

    Article  MathSciNet  Google Scholar 

  32. Wen C, Hu Q-Y, Yin G-J, Gu X-M, Shen Z-L (2021) An adaptive Power-GArnoldi algorithm for computing PageRank. J Comput Appl Math 386:113209. https://doi.org/10.1016/j.cam.2020.113209

    Article  MathSciNet  Google Scholar 

  33. Gu C-Q, Jiang X-L, Shao C-C, Chen Z-B (2018) A GMRES-Power algorithm for computing PageRank problems. J Comput Appl Math 343:113–123. https://doi.org/10.1016/j.cam.2018.03.017

    Article  MathSciNet  Google Scholar 

  34. Shen Z-L, Su M, Carpentieri B, Wen C (2022) Shifted power-GMRES method accelerated by extrapolation for solving PageRank with multiple dam** factors. Appl Math Comput 420:126799. https://doi.org/10.1016/j.amc.2021.126799

    Article  MathSciNet  Google Scholar 

  35. Gu X-M, Lei S-L, Zhang K, Shen Z-L, Wen C, Carpentieri B (2022) A Hessenberg-type algorithm for computing PageRank problems. Numer Algorithms 89:1845–1863. https://doi.org/10.1007/s11075-021-01175-w

    Article  MathSciNet  Google Scholar 

  36. Arnoldi WE (1951) The principle of minimized iteration in the solution of the matrix eigenvalue problem. Q Appl Math 9:17–29. https://doi.org/10.1093/qjmam/4.4.466

    Article  MathSciNet  Google Scholar 

  37. ** Y, Wen C, Huang T-Z, Shen Z-L (2022) A simpler GMRES algorithm accelerated by Chebyshev polynomials for computing PageRank. J Comput Appl Math 413:114395. https://doi.org/10.1016/j.cam.2022.114395

    Article  MathSciNet  Google Scholar 

  38. Gu C-Q, Wang W-W (2017) An Arnoldi-Inout algorithm for computing PageRank problems. J Comput Appl Math 309:219–229. https://doi.org/10.1016/j.cam.2016.05.026

    Article  MathSciNet  Google Scholar 

  39. Zhang H-F, Huang T-Z, Wen C, Shen Z-L (2016) FOM accelerated by an extrapolation method for solving PageRank problems. J Comput Appl Math 296:397–409. https://doi.org/10.1016/j.cam.2015.09.027

    Article  MathSciNet  Google Scholar 

  40. Wu K, Simon H (2000) Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl 22:602–616. https://doi.org/10.1137/S0895479898334605

    Article  MathSciNet  Google Scholar 

  41. Sorensen D (1993) Implicit application of polynomial filters in a \(k\)-step Arnoldi method. SIAM J Matrix Anal Appl 13:357–385. https://doi.org/10.1137/0613025

    Article  MathSciNet  Google Scholar 

  42. Astudillo R, Gijzen MB (2016) A restarted Induced Dimension Reduction method to approximate eigenpairs of large unsymmetric matrices. J Comput Appl Math 296:24–35. https://doi.org/10.1016/j.cam.2015.09.014

    Article  MathSciNet  Google Scholar 

  43. Langville AN, Meyer CD (2004) Updating PageRank with iterative aggregation. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters (WWW Alt.’04), pp. 392–393. ACM, New York, NY. https://doi.org/10.1145/1013367.1013491

  44. Bellalij M, Saad Y, Sadok H (2010) Further analysis of the Arnoldi process for eigenvalue problems. SIAM J Numer Anal 48:393–407. https://doi.org/10.1137/070711487

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of the first author was supported by Scientific Research Project of the Guizhou Provincial Education (No. KY[2022]126). The second author was supported by Sichuan Science and Technology Program (No. 2022ZYD0006), Guanghua Talent Project of Southwestern University of Finance and Economics (Contract No. 20170224) and China Scholarship Council (Contract No. 202206985005).

Author information

Authors and Affiliations

Authors

Contributions

QYH contributed significantly to the conception of the study; QYH performed the experiment and wrote the manuscript; XMG and CW contributed significantly to analysis and manuscript preparation; CW helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to **an-Ming Gu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, QY., Gu, XM. & Wen, C. Application of an extrapolation method in the Hessenberg algorithm for computing PageRank. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06327-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06327-y

Keywords

Mathematics Subject Classification

Navigation