Log in

Molecular insights into enantioselective separation of λ-cyhalothrin: a theoretical investigation

  • Brief Report
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

λ-Cyhalothrin (CLT), a widely employed pyrethroid insecticide for pest control, is typically marketed as a racemate, akin to many other pesticides. It has been recognized that optical isomers may exhibit distinct biological activity and toxicity, prompting the burgeoning demand for more efficient separation methods to isolate these isomers. In this study, we employed a theoretical approach to unravel the chiral recognition mechanisms governing the interaction between a polysaccharide-derived stationary phase and the λ-cyhalothrin. Density functional theory calculations were utilized to glean structural and energetic information, enabling the elucidation of the observed chiral discrimination and enantiomeric elution order from prior HPLC experiments. Our analysis pinpointed the critical role of hydrogen bonding and π-π stacking interactions in dictating the relative stability of the diastereomeric complexes formed between the λ-cyhalothrin enantiomers and the chiral selector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

No datasets were generated or analyzed during the current study.

References

  1. Pasteur L (1848) On the relations that can exist between crystalline form, and chemical composition and the sense of rotary polarization. Ann Chim Phys 24(6):442

    Google Scholar 

  2. Hassan RM, Yehia AM, Saleh OA, El-Azzouny AA, Aboul-Enein HY (2018) Structure-retention relationship for enantioseparation of selected fluoroquinolones. Chirality 30(6):828. https://doi.org/10.1002/chir.22861

    Article  CAS  PubMed  Google Scholar 

  3. Aboul-Enein HY, Aboul-Enein MN, El-Azzouny AA, Saleh OA, Hassan RM, Amin KM (2018) Enantioseparation of substituted 1, 3-diazaspiro [4.5]decan-4-ones: HPLC comparative study on different polysaccharide type chiral stationary phases. J Chromatogr Sci 56(2):160. https://doi.org/10.1093/chromsci/bmx098

    Article  CAS  PubMed  Google Scholar 

  4. Hassan RM, Saleh OA, El-Azzouny AA, Aboul-Enein HY, Fouad MA (2021) Experimental design optimization of simultaneous enantiomeric separation of atenolol and chlorthalidone binary mixture by high-performance liquid chromatography using polysaccharide-based stationary phases. Chirality 33(7):397. https://doi.org/10.1002/chir.23315

    Article  CAS  PubMed  Google Scholar 

  5. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217(6):813. https://doi.org/10.1016/j.chroma.2009.10.022

    Article  CAS  Google Scholar 

  6. D’Orazio G, Fanali C, Asensio-Ramos M, Fanali S (2017) Chiral separations in food analysis. TrAC, Trends Anal Chem 96:151. https://doi.org/10.1016/j.trac.2017.05.013

    Article  CAS  Google Scholar 

  7. Vargas-Caporali J, Juaristi E (2018) Determination of enantioselectivities by means of chiral stationary phase HPLC in order to identify effective proline-derived organocatalysts. J Braz Chem Soc 29(5):896. https://doi.org/10.21577/0103-5053.20170211

    Article  CAS  Google Scholar 

  8. Zhang JH, **e SM, Yuan LM (2022) Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 45(1):51. https://doi.org/10.1002/jssc.202100593

    Article  CAS  PubMed  Google Scholar 

  9. Grybinik S, Bosakova Z (2021) An overview of chiral separations of pharmaceutically active substances by HPLC (2018–2020). Monatsh Chem 152(9):1033. https://doi.org/10.1007/s00706-021-02832-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maier NM, Schefzick S, Lombardo GM, Feliz M, Rissanen K, Lindner W, Lipkowitz KB (2002) Elucidation of the chiral recognition mechanism of cinchona alkaloid carbamate-type receptors for 3,5-dinitrobenzoyl amino acids. J Am Chem Soc 124(29):8611. https://doi.org/10.1021/ja020203i

    Article  CAS  PubMed  Google Scholar 

  11. Schefzick S, Lömmerhofer M, Lindner W, Lipkowitz KB, Jalaie M (2000) Comparative molecular field analysis of quinine derivatives used as chiral selectors in liquid chromatography: 3D QSAR for the purposes of molecular design of chiral stationary phases. Chirality 12(10):742. https://doi.org/10.1002/1520-636X(2000)12:10%3c742::AIDCHIR7%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  12. Yashima E, Yamada M, Kaida Y, Okamoto Y (1995) Computational studies on chiral discrimination mechanism of cellulose trisphenylcarbamate. J Chromatogr A 694(2):347. https://doi.org/10.1016/0021-9673(94)01039-H

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto C, Yashima E, Okamoto Y (1999) Computational studies on chiral discrimination mechanism of phenylcarbamate derivatives of cellulose. Bull Chem Soc Jpn 72(8):1815. https://doi.org/10.1246/bcsj.72.1815

    Article  CAS  Google Scholar 

  14. Ye YK, Bai S, Vyas S, Wirth MJ (2007) NMR and computational studies of chiral discrimination by amylose tris(3,5-dimethylphenylcarbamate). J Phys Chem B 111(5):1189. https://doi.org/10.1021/jp0637173

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Liu D, Wang P, Zhou Z (2010) Computational study of enantioseparation by amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase. J Sep Sci 33(20):3245. https://doi.org/10.1002/jssc.201000266

    Article  CAS  PubMed  Google Scholar 

  16. Kasat RB, Wang NL, Franses EI (2008) Experimental probing and modeling of key sorbent–solute interactions of norephedrine enantiomers with polysaccharide-based chiral stationary phases. J Chromatogr A 1190(1):110. https://doi.org/10.1016/j.chroma.2008.02.116

    Article  CAS  PubMed  Google Scholar 

  17. Del Rio A, Hayes JM, Stein M, Piras P, Roussel C (2004) Theoretical reassessment of Whelk-O1 as an enantioselective receptor for 1-(4-halogeno-phenyl)-1-ethylamine derivatives. Chirality 16(S1):S1. https://doi.org/10.1002/chir.20009

    Article  CAS  PubMed  Google Scholar 

  18. Van Mourik T, Buhl M, Gaigeot MP (2014) Density functional theory across chemistry, physics and biology. Philos Trans A Math Phys En Sci 372(2011):20120488. https://doi.org/10.1098/rsta.2012.0488

    Article  Google Scholar 

  19. Ianni F, Carotti A, Marinozzi M, Marcelli G, Di Michele A, Sardella R, Lindner W, Natalini B (2015) Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: focus on the stereorecognition mechanism. Anal Chim Acta 885:174. https://doi.org/10.1016/j.aca.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  20. Sardella R, Lisanti A, Carotti A, Blasi P, Lindner W, Natalini B (2014) Ketoprofen enantioseparation with a cinchona alkaloid based stationary phase: enantiorecognition mechanism and release studies. J Sep Sci 37:2696. https://doi.org/10.1002/jssc.201400630

    Article  CAS  PubMed  Google Scholar 

  21. Sardella R, Macchiarulo A, Urbinati F, Ianni F, Carotti A, Kohout M, Lindner W, Péter A, Ilisz I (2018) Exploring the enantiorecognition mechanism of cinchona alkaloid-based zwitterionic chiral stationary phases and the basic trans-paroxetine enantiomers. J Sep Sci 41:1199. https://doi.org/10.1002/jssc.201701068

    Article  CAS  PubMed  Google Scholar 

  22. Silva CF, Guimarães L, Borges KB, Nascimento CS Jr (2020) Development and validation of an experimental and theoretical method for the chiral discrimination of dinotefuran. Chirality 32(1):53. https://doi.org/10.1002/chir.23136

    Article  CAS  PubMed  Google Scholar 

  23. Silva CF, Nascimento TA, Guimarães L, Borges KB, Nascimento CS Jr (2020) Elucidation of the chromatographic enantiomer elution order for praziquantel: an experimental and theoretical assessment. Chirality 32(3):353. https://doi.org/10.1002/chir.23164

    Article  CAS  PubMed  Google Scholar 

  24. Zin LC, Silva CF, Guimarães L, Borges KB, Nascimento CS Jr (2022) Separação enantiosseletiva da oxibutinina: uma investigação teórica e experimental. Quím Nova 45(3):263. https://doi.org/10.21577/0100-4042.20170815

    Article  CAS  Google Scholar 

  25. Maia PP, Nascimento CA, Silva CF, Nascimento CS Jr (2022) Chiral separation study of atenolol and carvedilol β-blocker drugs by DFT calculations. Comput Theor Chem 1213:113741. https://doi.org/10.1016/j.comptc.2022.113741

    Article  CAS  Google Scholar 

  26. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  PubMed  Google Scholar 

  27. Xu C, Wang J, Liu W, Sheng GD, Tu Y, Ma Y (2008) Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environ Toxicol Chem 27(1):174. https://doi.org/10.1897/07-134.1

    Article  CAS  PubMed  Google Scholar 

  28. Okamoto Y, Kaida Y (1994) Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J Chromatogr A 666(1):403. https://doi.org/10.1016/0021-9673(94)80400-1

    Article  CAS  Google Scholar 

  29. Yang Y, Hu J, Fang H, Hou X, Hou Z, Sang L, Yang X (2020) Enantioseparation of lysine derivatives on amylose tris (3, 5-dimethylphenylcarbamate) as chiral stationary phase with high separation factor. J Chromatograph A 1632:461598. https://doi.org/10.1016/j.chroma.2020.461598

    Article  CAS  Google Scholar 

  30. Yashima E (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A 906(1):105. https://doi.org/10.1016/S0021-9673(00)00501-X

    Article  CAS  PubMed  Google Scholar 

  31. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the dam** function in dispersion corrected density functional theory. J Comp Chem 32(7):1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  32. Gadre SR, Suresh CH, Mohan N (2021) Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 26(11):3289. https://doi.org/10.3390/molecules26113289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107(8):3210. https://doi.org/10.1063/1.474671

    Article  CAS  Google Scholar 

  34. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 100(1):65. https://doi.org/10.1080/00268977000101561

    Article  Google Scholar 

  35. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comp Chem 33(30):2363. https://doi.org/10.1002/jcc.23060

    Article  CAS  Google Scholar 

  36. Gao Z, Li M, Sun Y, Yang W (2018) Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface. J Haz Mat 360:436. https://doi.org/10.1016/j.jhazmat.2018.08.029

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, revision D01. Gaussian Inc, Wallingford CT

    Google Scholar 

Download references

Funding

The authors would like to thank the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A declaration of the role of each author is mentioned as follows: Prof. Clebio S. Nascimento Jr. participated in the supervision, validation, analysis of the results, writing—original draft preparation, writing—reviewing, and editing; Prof. Luciana Guimarães in the supervision; Miss Vitória S. Reis participated in the investigation, analysis of the results, data curation, and discussion; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Clebio S. Nascimento Jr..

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Disclaimer

We declare that this work was done by the authors named in this article, and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, V.S., Guimarães, L. & Nascimento, C.S. Molecular insights into enantioselective separation of λ-cyhalothrin: a theoretical investigation. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02356-8

Keywords

Navigation