Log in

Cu(II)-bis(benzoylacetonate) complexes as potential inhibitors for tubulin polymerization: synthesis, crystal structure, spectral characterization, HSA, DFT, molecular docking studies, and antioxidant activity

  • Review
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction of 1-phenyl-1,3-butanedione, also known as benzoylacetone (bzac), with adequate copper salts (sulfate/acetate) at a molar ratio of 2:1 in methanol led to two mononuclear complexes, trans-[Cu(bzac)2] (I) and cis-[Cu(bzac)2(CH3OH)] (II). Both complexes crystallize in the monoclinic P21/c symmetry. The copper is four- and five-coordinate, exhibiting a square planar geometry and a distorted square-based pyramid in I and II, respectively. Their crystal structures form discrete supramolecular packing. Indeed, Hirshfeld surface analysis (HSA) with 2D fingerprint plots revealed short-range intermolecular contacts involving O—H···Ο hydrogen bonds and C—H···π interactions in both complexes, in addition to π···π interactions in I. The complexes were characterized by IR and UV‒Vis spectroscopic methods. Moreover, a thorough examination of I and II was conducted, focusing on their structural attributes, electronic characteristics, and both linear and nonlinear optical (NLO) responses through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. These quantum calculations were executed utilizing uωwb97xd/6-311G**/SDD. The results revealed that the β0 value for II was approximately 23 times greater than that of urea. On the other hand, the static and dynamic second hyperpolarizabilities (γ(0; 0,0,0), γ(− 2ω; ω,0,0), and γ(− 2ω; ω,ω,0)) of I are approximately 33% higher than those of II. From this, we infer that the complexes under investigation have potential as outstanding materials for second- and third-order NLO applications. The interactions of I and II with tubulin (PDB ID: 4O2B) were evaluated by molecular docking studies. The results showed that both complexes can bind to many sites on the target and may inhibit its polymerization process. Furthermore, the antioxidant activity of both complexes was also determined and fully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The crystallographic details are provided in the CIFs available from the Cambridge Crystallographic Data Centre at https://www.ccdc.cam.ac.uk/structures/ with CCDC numbers: 2196130 and 2196139 for compounds I and II, respectively. The protein’s crystal structure was obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) protein data bank at https://www.rcsb.org with the following Protein Data Bank (PDB) ID: 4O2B.

References

  1. Allen G, Dwek RA (1966) An nmr study of keto–enol tautomerism in β-diketones. J Chem Soc B, p 161-163

  2. Yamabe S, Tsuchida N, Miyajima K (2004) Reaction paths of keto− enol tautomerization of β-diketones. J Phys Chem A 108(14):2750–2757

    Article  CAS  Google Scholar 

  3. Sloop JC, Bumgardner CL, Washington G, Loehle WD, Sankar SS, Lewis AB (2006) Keto–enol and enol–enol tautomerism in trifluoromethyl-β-diketones. J Fluorine Chem 127(6):780–786

    Article  CAS  Google Scholar 

  4. Da Silva MR, Ferrao MLC (1988) Energetics of metal-oxygen bonds in metal complexes of β-diketones. Pure Appl Chem 60(8):1225–1234

    Article  Google Scholar 

  5. Heinemann F (1997) Synthesis and structures of platina-β-diketonato complexes of platina-β-diketones; organometallic analogues of platinum blue complexes. Chem Commun 9:843–844

    Google Scholar 

  6. Skopenko VV, Amirkhanov VM, Sliva TY, Vasilchenko IS, Anpilova E, Garnovskii AD (2004) Various types of metal complexes based on chelating β-diketones and their structural analogues. Russ Chem Rev 73(8):737–752

    Article  CAS  Google Scholar 

  7. Priya NP, Arunachalam SV, Sathya N, Chinnusamy V, Jayabalakrishnan C (2009) Catalytic and antimicrobial studies of binuclear ruthenium (III) complexes containing bis-β-diketones. Transition Met Chem 34(4):437–445

    Article  CAS  Google Scholar 

  8. Holm R, Cotton F (1958) Spectral investigations of metal complexes of β-diketones. I. Nuclear magnetic resonance and ultraviolet spectra of acetylacetonates1. J Am Chem Soc 80(21):5658–5663

    Article  CAS  Google Scholar 

  9. Okafor EC (1981) The metal complexes of heterocyclic β-diketones and their derivatives, part VIII synthesis, structure, proton NMR and infrared spectral studies of the complexes of Al (III), Fe (III), Co (III), Rh (III), In (III), and Zr (IV) with l-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5 (HPMTFP). Zeitschrift für Naturforschung B 36(2):213–217

    Article  Google Scholar 

  10. Heller ST, Natarajan SR (2006) 1, 3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Org Lett 8(13):2675–2678

    Article  CAS  PubMed  Google Scholar 

  11. Polshettiwar V, Varma RS (2008) Greener and rapid access to bio-active heterocycles: room temperature synthesis of pyrazoles and diazepines in aqueous medium. Tetrahedron Lett 49(2):397–400

    Article  CAS  Google Scholar 

  12. ** W, Yu H, Yu Z (2011) Regioselective synthesis of multisubstituted pyrazoles via cyclocondensation of β-thioalkyl-α, β-unsaturated ketones with hydrazines. Tetrahedron Lett 52(44):5884–5887

    Article  CAS  Google Scholar 

  13. Joule JA, Mills K, Smith GF (2020) Heterocyclic chemistry. CRC Press

    Book  Google Scholar 

  14. Stille JK, Unglaube J, Freeburger M (1968) Reactions of cyclic 1, 3-diketones with hydrazine. Mechanism of cinnolino [5, 4, 3-cde] cinnoline formation. Unusual oxidation as a result of steric crowding. J Am Chem Soc 90(25):7076–7083

    Article  CAS  Google Scholar 

  15. Prasse C, von Gunten U, Sedlak DL (2020) Chlorination of phenols revisited: unexpected formation of α, β-unsaturated C4-dicarbonyl ring cleavage products. Environ Sci Technol 54(2):826–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wypych G (2015) 2-PVC properties. PVC formulary, pp 5–44

    Google Scholar 

  17. Houska J, Salhi E, Walpen N, von Gunten U (2021) Oxidant-reactive carbonous moieties in dissolved organic matter: selective quantification by oxidative titration using chlorine dioxide and ozone. Water Res 207:117790

    Article  CAS  PubMed  Google Scholar 

  18. Lim S, Shi JL, von Gunten U, McCurry DL (2022) Ozonation of organic compounds in water and wastewater: a critical review. Water Research, p 118053

    Google Scholar 

  19. Zhang G, Wu B, Zhang S (2017) Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters. Environ Pollut 225:691–699

    Article  CAS  PubMed  Google Scholar 

  20. **e M, Zhang C, Zheng H, Zhang G, Zhang S (2022) Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: kinetics, mechanisms, and products. Water Res 217:118424

    Article  CAS  PubMed  Google Scholar 

  21. Vigato PA, Peruzzo V, Tamburini S (2009) The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord Chem Rev 253(7–8):1099–1201

    Article  CAS  Google Scholar 

  22. Kljun J, Turel I (2017) β-Diketones as scaffolds for anticancer drug design–from organic building blocks to natural products and metallodrug components. Eur J Inorg Chem 2017(12):1655–1666

    Article  CAS  Google Scholar 

  23. Sharma N, Kumari M, Kumar V, Chaudhry S (2010) Synthesis, structural characterisation and antibacterial activity of bis (1-phenyl-1, 3-butanedionato) non-oxovanadium (IV) hydroxamates. J Enzyme Inhib Med Chem 25(5):708–714

    Article  CAS  PubMed  Google Scholar 

  24. Kaushal R, Thakur S (2016) Nehra K (2016) ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes. Int J Med Chem 1:2361214

    Google Scholar 

  25. Ekennia AC, Onwudiwe DC, Olasunkanmi LO, Osowole AA (2015) Ebenso EE (2015) Synthesis, DFT calculation, and antimicrobial studies of novel Zn (II), Co (II), Cu (II), and Mn (II) heteroleptic complexes containing benzoylacetone and dithiocarbamate. Bioinorg Chem Appl 1:789063

    Google Scholar 

  26. Pais GC, Zhang X, Marchand C, Neamati N, Cowansage K, Svarovskaia ES, Pathak VK, Tang Y, Nicklaus M, Pommier Y (2002) Structure activity of 3-aryl-1, 3-diketo-containing compounds as HIV-1 integrase inhibitors. J Med Chem 45(15):3184–3194

    Article  CAS  PubMed  Google Scholar 

  27. Singletary K, MacDonald C, Iovinelli M, Fisher C, Wallig M (1998) Effect of the beta-diketones diferuloylmethane (curcumin) and dibenzoylmethane on rat mammary DNA adducts and tumors induced by 7, 12-dimethylbenz [a] anthracene. Carcinogenesis 19(6):1039–1043

    Article  CAS  PubMed  Google Scholar 

  28. Pettinari R, Marchetti F, Di Nicola C, Pettinari C (2018) Half-sandwich metal complexes with β-diketone-like ligands and their anticancer activity. Eur J Inorg Chem 2018(31):3521–3536

    Article  CAS  Google Scholar 

  29. Eshaghi Malekshah R, Salehi M, Kubicki M, Khaleghian A (2019) Biological studies and computational modeling of two new copper complexes derived from β-diketones and their nano-complexes. J Coord Chem 72(10):1697–1714

    Article  CAS  Google Scholar 

  30. Wilson JJ, Lippard SJ (2012) In vitro anticancer activity of cis-diammineplatinum (II) complexes with β-diketonate leaving group ligands. J Med Chem 55(11):5326–5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  PubMed  Google Scholar 

  32. Semmingsen D, Larsson LO, Nyberg B, Huhtikangas A, Pearson W, Meisalo V (1972) The Crystal Structure of Benzoylacetone. Acta Chemi Scand 26:143–154

    Article  CAS  Google Scholar 

  33. Jones RD (1976) The crystal and molecular structure of the enol form of 1-phenyl-1, 3-butanedione (benzoylacetone) by neutron diffraction. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 32(7):2133–2136

    Article  Google Scholar 

  34. Schiøtt B, Iversen BB, Hellerup Madsen GK, Bruice TC (1998) Characterization of the short strong hydrogen bond in benzoylacetone by ab initio calculations and accurate diffraction experiments Implications for the electronic nature of low-barrier hydrogen bonds in enzymatic reactions. J Am Chem Soc 120(46):12117–12124

    Article  Google Scholar 

  35. Madsen GK (1999) Structure and bonding in Cis-enol systems. In: AIP Conference Proceedings. American Institute of Physics 479:107–111

    CAS  Google Scholar 

  36. Tayyari SF, Emampour J, Vakili M, Nekoei AR, Eshghi H, Salemi S, Hassanpour M (2006) Vibrational assignment and structure of benzoylacetone: a density functional theoretical study. J Mol Struct 794(1–3):204–214

    Article  CAS  Google Scholar 

  37. Matsuzawa H, Nakagaki T, Iwahashi M (2007) Intramolecular hydrogen bonding (proton transfer) of 1-phenyl-1, 3-butanedione. J Oleo Sci 56(12):653–658

    Article  CAS  PubMed  Google Scholar 

  38. Durlak P, Latajka Z (2014) Car-Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bonds in the crystals of benzoylacetone and dideuterobenzoylacetone. Phys Chem Chem Phys 16(42):23026–23037

    Article  CAS  PubMed  Google Scholar 

  39. Kidd M, Sager RS, Watson WH (1967) Properties of some copper (II) and zinc (II) N-oxide and B-diketone complexes. Inorg Chem 6(5):946–951

    Article  CAS  Google Scholar 

  40. Belford RC, Fenton D, Truter MR (1972) Reactions of 1, 4-diazabicyclo [2, 2, 2] octane with bis-(1, 1, 1, 5, 5, 5-hexafluoropentane-2, 4-dionato) copper (II) and the crystal structure of the 1: 1 complex. J Chem Soc, Dalton Trans 20:2208–2213

    Article  Google Scholar 

  41. Siedle A, Newmark R, Pignolet L (1982) Structure and stereochemical nonrigidty in the triarylphosphinepalladium bis (hexafluoroacetylacetonate), a new isomeric class of palladium bis (hexafluoroacetylacetonate) complexes. J Am Chem Soc 104(24):6584–6590

    Article  CAS  Google Scholar 

  42. Soldatov DV, Ripmeester JA (2000) Inclusion in microporous β-Bis (1, 1, 1-trifluoro-5, 5-dimethyl-5-methoxyacetylacetonato) copper (II), an organic zeolite mimic. Chem Mater 12(7):1827–1839

    Article  CAS  Google Scholar 

  43. Maverick AW, Fronczek FR, Maverick EF, Billodeaux DR, Cygan ZT, Isovitsch RA (2002) Structures of anhydrous and hydrated copper (II) hexafluoroacetylacetonate. Inorg Chem 41(24):6488–6492

    Article  CAS  PubMed  Google Scholar 

  44. Sahbari J, Olmstead M (1983) Structure of sodium acetylacetonate monohydrate, Na [C5H7O2]. H2O. Acta Crystallogr Sect C Cryst Struct Commun 39(8):1037–1038

    Article  Google Scholar 

  45. Vicente J, Chicote MAT (1999) The ‘acac method’for the synthesis of coordination and organometallic compounds: synthesis of gold complexes. Coordination Chem Rev 193:1143–1161

    Article  Google Scholar 

  46. Rzepa HS, Cass ME (2007) In search of the Bailar and Rây− Dutt twist mechanisms that racemize chiral trischelates: a computational study of ScIII, TiIV, CoIII, ZnII, GaIII, and GeIV complexes of a ligand analogue of acetylacetonate. Inorg Chem 46(19):8024–8031

    Article  CAS  PubMed  Google Scholar 

  47. Suttil J, Kucharyson J, Escalante-Garcia I, Cabrera P, James B, Savinell R, Sanford M, Thompson L (2015) Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries. Journal of Materials Chemistry A 3(15):7929–7938

    Article  CAS  Google Scholar 

  48. **ong R-G, Zuo J-L, Yu Z, You X-Z, Chen W (1999) Eu5 (μ4-OH)(μ3-OH) 4 (μ-DBM) 4 (DBM) 6 (DBM= dibenzoylmethide): a novel Eu5 square-pyramid polynuclear complex with a rare μ4-OH bridging mode. Inorg Chem Commun 2(10):490–494

    Article  CAS  Google Scholar 

  49. Zeng X-R, **ong R-G, You X-Z, Cheung K-K (2000) Triboluminescent spectrum and crystal structure of a europate complex with the most intensely triboluminescent emission at ambient temperature. Inorg Chem Commun 3(7):341–344

    Article  CAS  Google Scholar 

  50. **ong R-G, You X-Z (2002) Synthesis and characterization of the firstly observed two brilliantly triboluminescent lanthanide complexes: 2-hydroxyethylammonium and pyrrolidinium tetrakis (dibenzoylmethide) europate (III). Crystal structure of one brilliantly triboluminescent acentric complex: dimethylbenzylammonium tetrakis (dibenzoylmethide) europate. Inorg Chem Commun 5(9):677–681

    Article  CAS  Google Scholar 

  51. Jung YS, Lee JH, Song K, Kang S-J (1998) The structural study of the lithium beta-diketonate complex. Bull Korean Chem Soc 19(4):484–486

    CAS  Google Scholar 

  52. Hon P-K, Pfluger CE, Belford RL (1967) Bis (1-phenyl-1, 3-butanedionato) palladium (II). Crystal and molecular structure of the trans form. Inorg Chem 6(4):730–735

    Article  CAS  Google Scholar 

  53. Knyazeva A, Shugam E, Shkol’nikova, L (1970) Crystal chemical data regarding intracomplex compounds of beta diketones. J Struct Chem 11(5):875–876

    Article  Google Scholar 

  54. Hon P-K, Pfluger C, Belford RL (1966) The molecular and crystal structure of bis (1-phenyl-l, 3-butanedionato) copper. Inorg Chem 5(4):516–521

    Article  CAS  Google Scholar 

  55. Dey SK, Bag B, Zhou Z, Chan AS, Mitra S (2004) Synthesis, characterization and crystal structure of a monomeric and a macrocyclic copper (II) complex with a large cavity using benzylacetylacetone ligand. Inorg Chim Acta 357(7):1991–1996

    Article  CAS  Google Scholar 

  56. Krishnegowda HM, Karthik CS, Marichannegowda MH, Kumara K, Kudigana PJ, Lingappa M, Mallu P, Neratur LK (2019) Synthesis and structural studies of 1-phenyl-1, 3-butanedione copper (II) complexes as an excellent antimicrobial agent against methicillin-resistant Staphylococcus aureus. Inorg Chim Acta 484:227–236

    Article  CAS  Google Scholar 

  57. Cox E, Shorter A, Wardlaw W (1937) Stereochemistry of bivalent tin and lead. Nature 139(3506):71–72

    Article  CAS  Google Scholar 

  58. Serpone N, Fay RC (1967) Stereochemistry and lability of dihalobis (beta-diketonato) titanium (IV) complexes. II Benzoylacetonates and dibenzoylmethanates Inorganic Chemistry 6(10):1835–1843

    Article  CAS  Google Scholar 

  59. Hambley TW, Hawkins CJ, Kabanos TA (1987) Synthetic, structural, and physical studies of tris (2, 4-pentanedionato) vanadium (IV) hexachloroantimonate (V) and tris (1-phenyl-1, 3-butanedionato) vanadium (IV) hexachloroantimonate (V). Inorg Chem 26(22):3740–3745

    Article  CAS  Google Scholar 

  60. Liu R, Conradie J (2015) Tris (β-diketonato) chromium (III) complexes: effect of the β-diketonate ligand on the redox properties. Electrochim Acta 185:288–296

    Article  CAS  Google Scholar 

  61. Freitag R, Conradie J (2015) Electrochemical and computational chemistry study of Mn (β-diketonato) 3 complexes. Electrochim Acta 158:418–426

    Article  CAS  Google Scholar 

  62. Conradie MM, Van Rooyen PH, Conradie J (2016) X-ray and electronic structure of tris (benzoylacetonato-κ2O, O’) iron (III). J Mol Struct 1123:199–205

    Article  CAS  Google Scholar 

  63. Liu R, Van Rooyen PH, Conradie J (2016) Geometrical isomers of tris (β-diketonato) metal (III) complexes for M= Cr or Co: synthesis, X-ray structures and DFT study. Inorg Chim Acta 447:59–65

    Article  CAS  Google Scholar 

  64. Saxena U, Rai A, Mathur V, Mehrotra R, Radford D (1970) Reactions of zirconium isopropoxide with β-diketones and β-keto-esters. J Chem Soc A, p 904-907

  65. Zehra S, Tabassum S, Arjmand F (2021) Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discovery Today 26(4):1086–1096

    Article  CAS  PubMed  Google Scholar 

  66. Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry (formerly current medicinal chemistry-anti-cancer agents) 9(2):185–211

    CAS  Google Scholar 

  67. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114(1):815–862

    Article  CAS  PubMed  Google Scholar 

  68. Dustin P (2012) Microtubules. Springer Science & Business Media

    Google Scholar 

  69. Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4:153

    Article  PubMed  PubMed Central  Google Scholar 

  70. Caporizzo MA, Chen CY, Prosser BL (2019) Cardiac microtubules in health and heart disease. Exp Biol Med 244(15):1255–1272

    Article  CAS  Google Scholar 

  71. Waites C, Qu X, Bartolini F (2021) The synaptic life of microtubules. Curr Opin Neurobiol 69:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacRae TH (1992) Towards an understanding of microtubule function and cell organization: an overview. Biochem Cell Biol 70(10–11):835–841

    Article  CAS  PubMed  Google Scholar 

  73. Borisy G, Heald R, Howard J, Janke C, Musacchio A, Nogales E (2016) Microtubules: 50 years on from the discovery of tubulin. Nat Rev Mol Cell Biol 17(5):322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407(6800):41–47

    Article  CAS  PubMed  Google Scholar 

  75. Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH (2002) Microtubule structure at 8 Å resolution. Structure 10(10):1317–1328

    Article  CAS  PubMed  Google Scholar 

  76. Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332

    Article  CAS  PubMed  Google Scholar 

  77. McLoughlin EC, O’Boyle NM (2020) Correction: McLoughlin, EC; O’Boyle (2020) NM Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals 13(4):72

    Article  PubMed  PubMed Central  Google Scholar 

  78. D’Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E (1994) 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci 91(9):3964–3968

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ben-Chetrit E (1998) Colchicine: 1998 update. Semin Arthritis Rheum 28:48–59

    Article  CAS  PubMed  Google Scholar 

  80. Prinz H (2002) Recent advances in the field of tubulin polymerization inhibitors. Expert Rev Anticancer Ther 2(6):695–708

    Article  CAS  PubMed  Google Scholar 

  81. Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC (2003) Microtubule-interacting drugs for cancer treatment. Trends Pharmacol Sci 24(7):361–365

    Article  CAS  PubMed  Google Scholar 

  82. Bruker A (2017) SAINT, Version 8.40B, Bruker analytical X-ray systems. Inc., Madison, Wisconsin, USA

  83. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Crystallogr 48(1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sheldrick GM (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71(1):3–8

    Article  Google Scholar 

  85. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry 71(1):3–8

    PubMed  PubMed Central  Google Scholar 

  86. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  87. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4(66):378–392

    Article  CAS  Google Scholar 

  88. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

  89. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54(3):1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  91. Kargar H, Fallah-Mehrjardi M, Ashfaq M, Munawar KS, Tahir MN, Behjatmanesh-Ardakani R, Rudbari HA, Ardakani AA, Sedighi-Khavidak S (2021) Zn (II) complexes containing O, N, N, O-donor Schiff base ligands: synthesis, crystal structures, spectral investigations, biological activities, theoretical calculations and substitution effect on structures. J Coord Chem 74(16):2720–2740

    Article  CAS  Google Scholar 

  92. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267(3–4):215–220

    Article  CAS  Google Scholar 

  93. Ramalingam A, Kansız S, Dege N, Sambandam S (2021) Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-chloro-2, 6-bis (4-chlorophenyl)-3-methylpiperidin-4-one. J Chem Crystallogr 51:273–287

    Article  CAS  Google Scholar 

  94. Ashfaq M, Bogdanov G, Ali A, Tahir MN, Abdullah S (2021) Pyrimethamine-based novel co-crystal salt: synthesis, single-crystal investigation, Hirshfeld surface analysis and DFT inspection of the 2, 4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2, 4-dichlorobenzoate (1: 1)(DECB). J Mol Struct 1235:130215

    Article  CAS  Google Scholar 

  95. Taia A, Ibrahimi BE, Benhiba F, Ashfaq M, Tahir MN, Essaber M, Aatif A, Hökelek T, Mague JT, Sebbar NK, Essassi EM (2021) Syntheses, single crystal X-ray structure, Hirshfeld surface analyses, DFT computations and Monte Carlo simulations of New Eugenol derivatives bearing 1, 2, 3-triazole moiety. J Mol Struct 1234:130189

    Article  CAS  Google Scholar 

  96. Chavda BR, Socha BN, Pandya SB, Chaudhary KP, Padariya TJ, Alalawy MD, Patel MK, Dubey RP, Patel UH (2021) Coordination behavior of dinuclear silver complex of sulfamethoxazole with solvent molecule having static rotational disorder: spectroscopic characterization, crystal structure, Hirshfeld surface and antimicrobial activity. J Mol Struct 1228:129777

    Article  CAS  Google Scholar 

  97. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  98. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    Article  PubMed  Google Scholar 

  99. Hannachi D, Khelfaoui N, Zaidi M, Yahiaoui D, Lakehal S, Morell C, Chermette H (2023) The effect of resonance-assisted hydrogen bond on the second-order nonlinear optical properties of pyridine hydrazone photoswitches: a quantum chemistry investigation. New J Chem 47(39):18359–18373

    Article  CAS  Google Scholar 

  100. Kamli D, Hannachi D, Samsar D, Chermette H (2023) Bis-TTF-Ge derivatives: promising linear and nonlinear optical properties, a theoretical investigation. New J Chem 47(3):1234–1246

    Article  CAS  Google Scholar 

  101. Irshad S, Ullah F, Khan S, Ludwig R, Mahmood T, Ayub K (2021) First row transition metals decorated boron phosphide nanoclusters as nonlinear optical materials with high thermodynamic stability and enhanced electronic properties; a detailed quantum chemical study. Opt Laser Technol 134:106570

    Article  CAS  Google Scholar 

  102. Iqbal J, Ayub K (2016) Theoretical study of the non linear optical properties of alkali metal (Li, Na, K) doped aluminum nitride nanocages. RSC Adv 6(96):94228–94235

    Article  Google Scholar 

  103. Sarwar S, Yaqoob J, Khan MU, Hussain R, Zulfiqar S, Anwar A et al (2022) Deciphering the role of alkali metals (Li, Na, K) do** for triggering nonlinear optical (NLO) properties of t-graphene quantum dots: toward the development of giant NLO response materials. ACS Omega 7(28):24396–24414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abegao LM, Fonseca RD, Santos FA, Rodrigues JJ, Kamada K, Mendonça CR et al (2019) First molecular electronic hyperpolarizability of series of π-conjugated oxazole dyes in solution: an experimental and theoretical study. RSC Adv 9(45):26476–26482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He HM, Yang H, Li Y, Li ZR (2022) Front Chem 10:1–10

    Google Scholar 

  106. Mravec B, Budzak S, Medved M, Pasteka LF, Slavov C, Sassmannshausen T et al (2021) Design of high-performance pyridine/quinoline hydrazone photoswitches. J Org Chem 86(17):11633–11646

    Article  CAS  PubMed  Google Scholar 

  107. Rice JE, Amos RD, Colwell SM, Handy NC, Sanz J (1990) Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride. J Chem Phys 93(12):8828–8839

    Article  CAS  Google Scholar 

  108. Kodikara MS, Stranger R, Humphrey MG (2018) Computational studies of the nonlinear optical properties of organometallic complexes. Coord Chem Rev 375:389–409

    Article  CAS  Google Scholar 

  109. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126(6):1977

    Article  CAS  Google Scholar 

  110. Kurtz HA, Stewart JJ, Dieter KM (1990) Calculation of the nonlinear optical properties of molecules. J Comput Chem 11(1):82–87

    Article  CAS  Google Scholar 

  111. Shelton DP, Rice JE (1994) Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chem Rev 94(1):3–29

    Article  CAS  Google Scholar 

  112. Bersohn R, Pao YH, Frisch H (1966) Double-quantum light scattering by molecules. J Chem Phys 45(9):3184–3198

    Article  CAS  Google Scholar 

  113. Plaquet A, Guillaume M, Champagne B, Castet F, Ducasse L, Pozzo JL, Rodriguez V (2008) In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches. Phys Chem Chem Phys 10(41):6223–6232

    Article  CAS  PubMed  Google Scholar 

  114. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76(2):270–276

    Article  Google Scholar 

  115. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO (2014) The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J Mol Biol 426(8):1848–1860

    Article  CAS  PubMed  Google Scholar 

  118. Biovia, Dassault Systèmes B (2021) Discovery studio visualizer, v21. 1.0. 20298. Dassault Systèmes, San Diego CA USA

    Google Scholar 

  119. Hathaway B, Billing D (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord Chem Rev 5(2):143–207

    Article  CAS  Google Scholar 

  120. Crutchley RJ, Hynes R, Gabe EJ (1990) Five-and four-coordinate copper (II) complexes of 2, 2’-bipyridine and phenylcyanamide anion ligands: crystal structures, cyclic voltammetry, and electronic absorption spectroscopy. Inorg Chem 29(24):4921–4928

    Article  CAS  Google Scholar 

  121. Mateyise NGS, Ghosh S, Gryzenhout M, Chiyindiko E, Conradie MM, Langner EH, Conradie J (2021) Synthesis, characterization, DFT and biological activity of oligothiophene β-diketone and Cu-complexes. Polyhedron 205:115290

    Article  CAS  Google Scholar 

  122. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1, 7-bis (N-methylbenzimidazol-2′-yl)-2, 6-dithiaheptane] copper (II) perchlorate. J Chem Soc, Dalton Trans 7:1349–1356

    Article  Google Scholar 

  123. Liang YY, Li B, Xu X, Long Gu F, Zhu C (2019) A density functional theory study on nonlinear optical properties of double cage excess electron compounds: theoretically design M [Cu (Ag)@(NH3) n](M= Be, Mg and Ca; n= 1–3). J Comput Chem 40(9):971–979

    Article  CAS  PubMed  Google Scholar 

  124. Baggi N, Garoni E, Colombo A, Dragonetti C, Righetto S, Roberto D (2018) … & Fantacci, S, Design of cyclometallated 5-π-delocalized donor-1, 3-di (2-pyridyl) benzene platinum (II) complexes with second-order nonlinear optical properties. Polyhedron 140:74–77

    Article  CAS  Google Scholar 

  125. Andraud C, Fortrie R, Barsu C, Stéphan O, Chermette H, Baldeck PL (2008) Excitonically coupled oligomers and dendrimers for two-photon absorption. Photoresponsive Polymers II:149–203

    Article  Google Scholar 

  126. Khan ZR, Shkir M, Ganesh V, AlFaify S, Yahia IS, Zahran HY (2018) Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: an effect of thickness. J Electron Mater 47:5386–5395

    Article  CAS  Google Scholar 

  127. Iliopoulos K, Krupka O, Gindre D, Sallé M (2010) Reversible two-photon optical data storage in coumarin-based copolymers. J Am Chem Soc 132(41):14343–14345

    Article  CAS  PubMed  Google Scholar 

  128. Homocianu M, Airinei A, Hamciuc C, Ipate AM (2019) Nonlinear optical properties (NLO) and metal ions sensing responses of a polymer containing 1, 3, 4-oxadiazole and bisphenol A units. J Mol Liq 281:141–149

    Article  CAS  Google Scholar 

  129. Bencheikh K (2003) Spin–orbit coupling in the spin-current-density-functional theory. J Phys A: Math Gen 36(48):11929

    Article  Google Scholar 

  130. Yahiaoui AA, Ghichi N, Hannachi D, Djedouani A, Meskaldji S, Merazig H, Harakat D (2022) Synthesis, XRD/HSA-interactions, biological activity, optical and nonlinear optical responses studies of new pyran derivative. J Mol Struct 1263:133161

    Article  CAS  Google Scholar 

  131. Boucherabine D, Merzougui M, Hannachi D, Melchiorre M, Pinto G, Ouari K (2023) Oxovanadium and copper complexes of new unsymmetrically tetradentate ligands: X-ray structure, theoretical and NLO properties, catalytic oxidation and bromoperoxidase activities. J Mol Struct 1291:136053

    Article  CAS  Google Scholar 

  132. Lamiri W, Djaafer-Moussa R, Merabet L, Setifi F, Kaboub L, Hannachi D (2023) Synthesis, XRD/HSA-interactions, QTAIM analysis, optical and nonlinear optical responses studies of Cu (II) complex with the Schiff base ligand derived from 5-bromosalicylaldehyde. ChemistrySelect 8(43):e202302953

    Article  CAS  Google Scholar 

  133. Bree C, Demircan A, Steinmeyer G (2010) Method for computing the nonlinear refractive index via Keldysh theory. IEEE J Quantum Electron 46(4):433–437

    Article  CAS  Google Scholar 

  134. Tarazkar M, Romanov D, Levis R (2014) Higher-order nonlinearity of refractive index: the case of argon. J Chem Phys 140(21):214316–214316

    Article  PubMed  Google Scholar 

  135. Dey SK, Bag B, Abdul Malik K, El Fallah MS, Ribas J, Mitra S (2003) A quasi-tetrahedral Cu4 cluster and a helical-chain copper (II) complex with single syn− anti carboxylate bridges: crystal structure and magnetic properties. Inorg Chem 42(13):4029–4035

    Article  CAS  PubMed  Google Scholar 

  136. Oda S, Kozuka H, Uchiyama H (2015) Thermoplastic softening behavior of organically modified polyoxotitanates: Effects of the amount of water and benzoylacetone for hydrolyzing alkoxides. J Appl Polym Sci 41(132)

  137. Ashfaq M, Tahir MN, Muhammad S, Munawar KS, Ali A, Bogdanov G, Alarfaji SS (2021) Single-crystal investigation, Hirshfeld surface analysis, and DFT study of third-order NLO properties of unsymmetrical acyl thiourea derivatives. ACS Omega 6(46):31211–31225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Direm A, Abdelbaky MS, Sayın K, Cornia A, Abosede O, Garcia-Granda S (2018) Sev and pcu topological nets in one-pot newly synthesized mixed-ligand imidazole-containing Cu (II) coordination frameworks: crystal structure, intermolecular interactions, theoretical calculations, magnetic behavior and biological activity. Inorg Chim Acta 478:59–70

    Article  CAS  Google Scholar 

  139. Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428(6979):198–202

    Article  CAS  PubMed  Google Scholar 

  140. Nogales E, Wolf SG, Downing KH (1998) Erratum: Structure of the αβ tubulin dimer by electron crystallography. Nature 393(6681):191–191

    Article  CAS  Google Scholar 

  141. Zheng YB, Gong JH, Liu XJ, Wu SY, Li Y, Xu XD et al (2016) A novel nitrobenzoate microtubule inhibitor that overcomes multidrug resistance exhibits antitumor activity. Sci Rep 6(1):31472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.G. thanks Centro di Servizi di Cristallografia Strutturale (CRIST), University of Florence (Italy). The authors are very thankful to the University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5280, Institute of Analytical Sciences, 69622 Villeurbanne Cedex, France, for offering the computing facilities.

Funding

The authors acknowledge the funding from the Ministry of Higher Education and Scientific Research (MESRS) and Abbes Laghrour University of Khenchela (Algeria) under project number: B00L01UN400120210002 (PRFU).

Author information

Authors and Affiliations

Authors

Contributions

Abdenour Guerraoui: writing—original draft, methodology, investigation, conceptualization, and software. Meriem Goudjil: writing—original draft, methodology, software, visualization, validation, and writing—review and editing. Amel Djedouani: visualization, validation, resources, and supervision. Amani Direm: software and validation. Abdelhalim Boussaa: software and validation. Douniazed Hannachi: writing—original draft, software, and validation. Elvira Fantechi: methodology and validation. Giampiero Ruani: visualization and validation. Abdecharif Boumaza: visualization, validation, resources, and supervision.

Corresponding author

Correspondence to Abdenour Guerraoui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerraoui, A., Goudjil, M., Djedouani, A. et al. Cu(II)-bis(benzoylacetonate) complexes as potential inhibitors for tubulin polymerization: synthesis, crystal structure, spectral characterization, HSA, DFT, molecular docking studies, and antioxidant activity. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02354-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02354-w

Keywords

Navigation