Log in

Establishing a substrate-assisted mechanism for the pre-transfer editing in SerRS and IleRS: a QM/QM investigation

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Aminoacyl-tRNA synthetases (aaRS) are key enzymes in protein biosynthesis that employ various editing mechanisms to ensure faithful translation of genetic information. Seryl-tRNA synthetase (SerRS) and isoleucine-tRNA synthetase (IleRS) utilize pre-transfer editing mechanisms to prevent the incorporation of the undesired misactivated amino acids. In this study, molecular dynamics (MD) and quantum mechanics/QM (QM/semiempirical) were used to provide atomistic details regarding the pre-transfer editing against the non-cognates homocysteine (Hcy) by IleRS as well as cysteine (Cys) and threonine (Thr) by SerRS. Notably, in both enzymes, the mechanism is found to follow a stepwise self-cyclization substrate-assisted mechanism. Initially, dihedral scan around the substrate’s Cβ__Cγ bond takes place followed by a concerted step of R-S(O)H deprotonation concomitant with a nucleophilic attack. The rate limiting step to edit against Hcy by IleRS is the dihedral scan step and require 24.3 kcal/mol to proceed. Meanwhile, the rate-limiting step for editing against both Cys and Thr by SerRS is found to be the second step with Gibbs energy barriers of 20.4 and 26.6 kcal/mol, respectively. Interestingly, following the same pre-transfer editing pathway against the cognate Ser by SerRS results in a significantly higher energy barrier of 31.4 kcal/mol and energetically less favoured product complex lies at 17.7 kcal/mol. This finding clearly indicates an enzymatically infeasible process against Ser-AMP from kinetic and thermodynamic perspectives. The provided mechanistic insights should provide novel foundation required for the development of effective therapeutic agents for the treatment of the many disease states associated with these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Coordinates for the optimized structures have been provided with the manuscript and more date can be provided once requested.

Abbreviations

aaRS:

Aminoacyl-tRNA Synthetases

SerRS:

Seryl-tRNA synthetases

IleRS:

Isoleucine-tRNA synthetase

Ser:

Serine

Thr:

Threonine

Hcy:

Homocysteine

RC:

Reactive complex

TS:

Transition state

IC:

Intermediate complex

PC:

Product complex

Op:

Non-bridged phosphate oxygen

H-bond:

Hydrogen bond

ATP:

Adenosine triphosphate

AMP:

Adenosine monophosphate

References

  1. Moghal A, Mohler K, Ibba M et al (2014) Mistranslation of the genetic code. FEBS Lett 588:4305–4310

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim S, You S, Hwang D et al (2011) Aminoacyl-tRNA synthetases and tumorigenesis: more than housekee**. Nat Rev Cancer 11:708–718

    CAS  PubMed  Google Scholar 

  3. Yao P, Fox PL (2013) Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 5:332–343

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nie A, Sun B, Fu Z, Yu D et al (2019) Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis  10

  5. Shim JA, Jo Y, Hwang H, Lee SE, Ha D, Lee JH, Kim J, Song P, Lee D, Hong C et al (2022) Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency. Cell Mol Life Sci 79

  6. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of transfer-RNA synthetases into 2 classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    ADS  CAS  PubMed  Google Scholar 

  7. Perona JJ, Gruic-Sovulj I (2014) Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. In Aminoacyl-tRNA synthetases in biology and medicine, Kim S Ed.  344:1–41

  8. Banik SD, Nandi N (2012) Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases. J Biomol Struct Dynam 30(6):701–715

    Google Scholar 

  9. Yadavalli SS, Ibba M (2012) In Advances in protein chemistry and structural biology, Vol 86: fidelity and quality control in gene expression, Marintchev A Ed. 86:1–43

  10. Schimmel P (2011) Mistranslation and its control by tRNA synthetases. Philoso Trans R Soc B Biol Sci 366:2965–2971

  11. Hussain T, Kamarthapu V, Kruparani SP, Deshmukh MV, Sankaranarayanan R et al (2010) Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proc Natl Acad Sci USA 107:22117–22121

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moras D (2010) Proofreading in translation: dynamics of the double-sieve model. Proc Natl Acad Sci USA 107:21949–21950

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cvetesic N, Dulic M, Bilus M, Sostaric N, Lenhard B, Gruic-Sovulj I et al (2016) Naturally Occurring isoleucyl-tRNA synthetase without tRNA-dependent pre-transfer editing. J Biol Chem 291:8618–8631

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hati S, Ziervogel B, SternJohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K et al (2006) Pre-transfer editing by class II prolyl-tRNA synthetase - role of aminoacylation active site in “selective release” of noncognate amino acids. J Biol Chem 38:27862–27872

    Google Scholar 

  15. Cvetesic N, Bilus M, Gruic-Sovulj I et al (2015) The tRNA A76 hydroxyl groups control partitioning of the tRNA-dependent pre- and post-transfer editing pathways in class I tRNA synthetase. J Biol Chem 290:13981–13991

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dulic M, Perona JJ, Gruic-Sovulj I et al (2014) Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Biochemistry 53:6189–6198

    CAS  PubMed  Google Scholar 

  17. Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I et al (2010) Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J Biol Chem 285(31):23799–23809

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jakubowski H, Goldman E (1992) Editing of errors in selection of amino-acids for protein-synthesis. Microbiol Rev 56:412–429

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukunaga R, Yokoyama S (2006) Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J Mol Biol 359:901–912

    CAS  PubMed  Google Scholar 

  20. Nomanbhoy TK, Hendrickson TL, Schimmel P et al (1999) Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol Cell 4:519–528

    CAS  PubMed  Google Scholar 

  21. Jakubowski H (2001) Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nut 131:2983S-2987S

    CAS  Google Scholar 

  22. Hartlein M, Cusack S (1995) Structure, function and evolution of seryl-transfer-rna synthetases - implications for the evolution of aminoacyl-transfer-RNA synthetases and the genetic-code. J Mol Evol 40:519–530

    ADS  CAS  PubMed  Google Scholar 

  23. Gruic-Sovulj I, Rokov-Plavec J, Weygand-Durasevic I et al (2007) Hydrolysis of non-cognate amino acyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. FEBS Lett 581:5110–5114

    CAS  PubMed  Google Scholar 

  24. Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Soll D, Weygand-Durasevic I, Ban N et al (2006) Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 25:2498–2509

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL et al (2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. Faseb J 21:A113–A113

    Google Scholar 

  26. Huang WJ, Bushnell EAC, Francklyn CS, Gauld JW et al (2011) The alpha-amino group of the threonine substrate as the general base during tRNA aminoacylation: a new version of substrate-assisted catalysis predicted by hybrid DFT. J Phys Chem A 115:13050–13060

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu HN, Gauld JW (2008) Substrate-assisted catalysis in the aminoacyl transfer mechanism of histidyl-tRNA synthetase: a density functional theory study. J Phys Chem B 112:16874–16882

    CAS  PubMed  Google Scholar 

  28. Aboelnga MM, Gauld JW (2017) Roles of the active site Zn(II) and residues in substrate discrimination by threonyl-tRNA synthetase: an MD and QM/MM investigation. J Phys Chem B 121:6163–6174

    CAS  PubMed  Google Scholar 

  29. Aboelnga MM, Gauld JW, Hayward JJ et al (2017) A water-mediated and substrate-assisted aminoacylation mechanism in the discriminating aminoacyl-tRNA synthetase GlnRS and non-discriminating GluRS. Phys Chem Chem Phys 19:25598–25609

    CAS  PubMed  Google Scholar 

  30. Aboelnga MM, Hayward JJ, Gauld JW et al (2018) Unraveling the critical role played by Ado762′OH in the post-transfer editing by archaeal threonyl-tRNA synthetase. J Phys Chem B 122:1092–1101

    CAS  PubMed  Google Scholar 

  31. Fortowsky GB, Simard DJ, Aboelnga MM, Gauld JW et al (2015) Substrate-assisted and enzymatic pretransfer editing of nonstandard amino acids by methionyl-tRNA synthetase. Biochemistry 54:5757–5765

    CAS  PubMed  Google Scholar 

  32. Jakubowski H (2012) Quality control in tRNA charging. Wiley Interdiscip Rev RNA 3:295–310

    CAS  PubMed  Google Scholar 

  33. Kermgard E, Yang Z, Michel A-M, Simari R, Wong J, Ibba M, Lazazzera BA et al (2017) Quality control by isoleucyl-tRNA synthetase of bacillus subtilis is required for efficient sporulation. Sci Rep 7:41763

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jakubowski H (2011) Quality control in tRNA charging - editing of homocysteine. Acta Biochim Pol 58:149–163

    CAS  PubMed  Google Scholar 

  35. Jakubowski H (1999) Misacylation of tRNA(Lys) with noncognate amino acids by Lysyl-tRNA synthetase. Biochemistry 38:8088–8093

    CAS  PubMed  Google Scholar 

  36. Dewan V, Reader J, Forsyth KM (2014) In Aminoacyl-tRNA synthetases in biology and medicine Kim S Ed. 344:293–329

  37. Yi J, Cai Z, Qiu H, Lu F, Luo Z, Chen B, Gu Q, Xu J, Zhou H et al (2022) Fragment screening and structural analyses highlight the ATP-assisted ligand. Nucleic Acids Res 50:4755–4768

  38. F CS, P M (2019) Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 294(14):5365–5385. https://doi.org/10.1074/jbc.REV118.002956

  39. Chowdhury S, Nandi N (2022) Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Phys Chem B 126:620–633

    CAS  Google Scholar 

  40. Nakama T, Nureki O, Yokoyama S (2001) Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 276:47387–47393

    CAS  PubMed  Google Scholar 

  41. Cestari I, Stuart K (2013) Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African trypanosomiasis. J Biol Chem 288:14256–14263

    CAS  PubMed  PubMed Central  Google Scholar 

  42.  Johnson RA, Chan AN, Ward RD, McGlade CA, Hatfield BM, Peters JM, Li B et al (2021) Inhibition of isoleucyl-tRNA synthetase by the hybrid antibiotic thiomarinol. J Am Chem Soc  143:12003–12013

  43. Pang L, Nautiyal M, De Graef S, Gadakh B, Zorzini V, Economou A, Strelkov SV, Van Aerschot A, Weeks SD et al (2020) Structural insights into the binding of natural pyrimidine-based inhibitors of class II aminoacyl-tRNA synthetases. ACS Chem Biol 15:407–415

    CAS  PubMed  Google Scholar 

  44. Zeng Y, Kulkarni A, Yang Z, Patil PB, Zhou W, Chi X, Van Lanen S, Chen S et al (2012) Biosynthesis of albomycin δ2 provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem Biol 7:1565–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Perona JJ, Hadd A (2012) Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 51:8705–8729

    CAS  PubMed  Google Scholar 

  46. Khan S (2016) Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malaria J 15

  47. Pang L , Weeks SD, Van Aerschot A et al (2021) Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery. Int J Mol Sci 22:1422–0067

  48. Molecular Operating Environment (MOE) (2016) Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  49. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ et al (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comp Chem 24:760–769

  51. Cui Q, Guo H, Karplus M (2002) Combining ab initio and density functional theories with semiempirical methods. J Chem Phys 117:5617–5631

    ADS  CAS  Google Scholar 

  52. Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ et al (2021) Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Arch Biochem Biophys 701:108807

    CAS  PubMed  Google Scholar 

  53. Aboelnga M, Wetmore SD (2019) Unveiling a single-metal-mediated phosphodiester bond cleavage mechanism for nucleic acids: a multiscale computational investigation of a human DNA repair enzyme. J Am Chem Soc 141:8646–8656

    CAS  PubMed  Google Scholar 

  54. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    ADS  CAS  Google Scholar 

  55. Lee CTY, W T, Parr RG, (1988) Development of the Colle-Salvetti Correlation-Energy Formula into aFunctional of the Electron Density. Phys Rev B 37:785

    ADS  CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H; Caricato, M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam, NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ et al (2009) Gaussian 09 (Revision E.01) Gaussian Inc Wallingford CT

  57. Aboelnga MM, Gauld JW (2022) Comparative QM/MM study on the inhibition mechanism of β-hydroxynorvaline to threonyl-tRNA synthetase. J Mol Graph Model 115:108224

    CAS  PubMed  Google Scholar 

  58. Sklenak S, Yao LS, Cukier RI, Yan HG et al (2004) Catalytic mechanism of yeast cytosine deaminase: an ONIOM computational study. J Am Chem Soc 126:14879–14889

    CAS  PubMed  Google Scholar 

  59. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728

    PubMed  Google Scholar 

  60. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    CAS  PubMed  Google Scholar 

  61. Sen A, Gaded V, Jayapal P, Rajaraman G, Anand R et al (2021) Insights into the dual shuttle catalytic mechanism of guanine deaminase. J Phys Chem B 125:8814–8826

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding

We acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) for financial support and Compute Canada for an award allocation of computational resources.

Author information

Authors and Affiliations

Authors

Contributions

Author contribution

M. M. Aboelnga: investigation, methodology, formal analysis, project administration, validation, visualization, and writing—original draft. J. W. Gauld: conceptualization, methodology, project administration, supervision, resources, funding acquisition, and writing.

Corresponding authors

Correspondence to Mohamed M. Aboelnga or James W. Gauld.

Ethics declarations

Ethical approval

This is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelnga, M.M., Gauld, J.W. Establishing a substrate-assisted mechanism for the pre-transfer editing in SerRS and IleRS: a QM/QM investigation. Struct Chem 35, 519–530 (2024). https://doi.org/10.1007/s11224-023-02204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02204-1

Keywords

Navigation