Log in

Molecular modeling and investigation of optoelectronic behaviour of metal substituted triamantane

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic properties, absorption spectra, and nonlinear optical properties of triamantane substituted with alkali metals were investigated. Upon the substitution of triamantane via alkali metals affect the absorption capacity drastically that also reflect form EHOMO-ELUMO (H–L) gap. Compared to triamantane, which has H–L gap of 9.06 eV, the designed molecule 9 has the H–L gap (3.474 eV). Alkali metal substitution at different position in triamantane reviled that specific position is important for enhancing the first order hyperpolarizability (βtot) value. Out of different molecules, 9 has a highest first hyperpolarizability among the designed molecules. Calculated results reviled that the lower crucial transition energy (ΔE = 1.648 eV) is responsible for the significant increase in first hyperpolarizability (βtot). We have also calculated frontier molecular orbitals (FMO), transition density matrix (TDM), and densities of states (DOS) at same level of the theory. The absorption shifts from ultraviolet to visible was observed when triamantane was substituted via alkali metal. It is also observed form spectra that as the size of the alkali metal atoms increases the red shift takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

We have used Gaussian 16 and multiwfn 3.8 software.

References

  1. Eaton DF (1991) Nonlinear optical materials. Science 253:281–287

    Article  PubMed  CAS  Google Scholar 

  2. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    Article  CAS  Google Scholar 

  3. Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Bredas J-L, Li J, Bublitz GU, Boxer SG (1997) Large molecular third-order optical nonlinearities in polarized carotenoids. Science 276:1233–1236

    Article  PubMed  CAS  Google Scholar 

  4. Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: Toward an understanding of structure- property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655

    Article  PubMed  CAS  Google Scholar 

  5. Oudar J-L, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  6. Van Cleuvenbergen S, Asselberghs I, Garcia-Frutos EM, Gomez-Lor B, Clays K, Perez-Moreno J (2012) Dispersion overwhelms charge transfer in determining the magnitude of the first hyperpolarizability in triindole octupoles. J Phys Chem C 116:12312–12321

    Article  Google Scholar 

  7. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R (1997) Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chem Eur J 3:1091–1104

    Article  CAS  Google Scholar 

  8. Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselberghs I, Clays K, Persoons A (2003) Highly unusual effects of π-conjugation extension on the molecular linear and quadratic nonlinear optical properties of ruthenium (II) ammine complexes. J Am Chem Soc 125:862–863

    Article  PubMed  CAS  Google Scholar 

  9. Geskin VM, Lambert C, Brédas J-L (2003) Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J Am Chem Soc 125:15651–15658

    Article  PubMed  CAS  Google Scholar 

  10. Xu H-L, Li Z-R, Wu D, Wang B-Q, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  PubMed  CAS  Google Scholar 

  11. Champagne B, Plaquet A, Pozzo J-L, Rodriguez V, Castet F (2012) Nonlinear optical molecular switches as selective cation sensors. J Am Chem Soc 134:8101–8103

    Article  PubMed  CAS  Google Scholar 

  12. Zhong R-L, Zhang J, Muhammad S, Hu Y-Y, Xu H-L, Su Z-M (2011) Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: A novel 2e–12c bond and large NLO responses. Chem - Eur J 17:11773–11779

    Article  PubMed  CAS  Google Scholar 

  13. Wu H-Q, Zhong R-L, Kan Y-H, Sun S-L, Zhang M, Xu H-L, Su Z-M (2013) After the electronic field: Structure, bonding, and the first hyperpolarizability of HArF. J Comput Chem 34:952–957

    Article  PubMed  CAS  Google Scholar 

  14. Karamanis P, Pouchan C (2012) Fullerene–C60 in contact with alkali metal clusters: prototype nano-objects of enhanced first hyperpolarizabilities. J Phys Chem C 116:11808–11819

    Article  CAS  Google Scholar 

  15. Koukaras EN, Zdetsis AD, Karamanis P, Pouchan C, Avramopoulos A, Papadopoulos MG (2012) Structural and static electric response properties of highly symmetric lithiated silicon cages: Theoretical predictions. J Comput Chem 33:1068–1079

    Article  PubMed  CAS  Google Scholar 

  16. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL (2005) The structure and the large nonlinear optical properties of Li@ Calix [4] pyrrole. J Am Chem Soc 127:10977–10981

    Article  PubMed  CAS  Google Scholar 

  17. Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@ B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833–11840

    Article  PubMed  CAS  Google Scholar 

  18. Kumar R, Yadav SK, Seth R, Singh A (2022) Designing of gigantic first-order hyperpolarizability molecules via joining the promising organic fragments: a DFT study. J Mol Model 29:5

    Article  PubMed  Google Scholar 

  19. Yadav SK, Bhunia S, Kumar R, Seth R, Singh A (2023) Designing Excess Electron Compounds by Substituting Alkali Metals to a Small and Versatile Tetracyclic Framework: A Theoretical Perspective. ACS Omega 8:7978–7988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Muhammad S, Xu H-L, Zhong R-L, Su Z-M, Al-Sehemi AG, Irfan A (2013) Quantum chemical design of nonlinear optical materials by sp 2-hybridized carbon nanomaterials: issues and opportunities. J Mater Chem C 1:5439–5449

    Article  CAS  Google Scholar 

  21. Xu H-L, Zhong R-L, Sun S-L, Su Z-M (2011) Widening or lengthening? Enhancing the first hyperpolarizability of tubiform multilithium salts. J Phys Chem C 115:16340–16346

    Article  CAS  Google Scholar 

  22. Xu H-L, Li Z-R, Wu D, Ma F, Li Z-J, Gu FL (2009) Lithiation and Li-doped effects of [5] cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  23. Hu Y-Y, Sun S-L, Muhammad S, Xu H-L, Su Z-M (2010) How the number and location of lithium atoms affect the first hyperpolarizability of graphene. J Phys Chem C 114:19792–19798

    Article  CAS  Google Scholar 

  24. Wu H-Q, Zhong R-L, Sun S-L, Xu H-L, Su Z-M (2014) Alkali metals-substituted adamantanes lead to visible light absorption: large first hyperpolarizability. J Phys Chem C 118:6952–6958

    Article  CAS  Google Scholar 

  25. Srivastava A, Mishra R, Kumar S, Dev K, Tandon P, Maurya R (2015) Molecular structure, spectral investigation (1H NMR, 13C NMR, UV–Visible, FT-IR, FT-Raman), NBO, intramolecular hydrogen bonding, chemical reactivity and first hyperpolarizability analysis of formononetin [7-hydroxy-3 (4-methoxyphenyl) chromone]: A quantum chemical study. J Mol Struct 1084:55–73

    Article  CAS  Google Scholar 

  26. Mahmood A, Khan SU-D, Rana UA, Janjua MRSA, Tahir MH, Nazar MF, Song Y (2015) Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective. J Phys Org Chem 28:418–422

    Article  CAS  Google Scholar 

  27. Sun W-M, Li X-H, Wu J, Lan J-M, Li C-Y, Wu D, Li Y, Li Z-R (2017) Can coinage metal atoms Be capable of serving as an excess electron source of alkalides with considerable nonlinear optical responses? Inorg Chem 56:4594–4600

    Article  CAS  Google Scholar 

  28. Srivastava AK (2021) Lithiated graphene quantum dot and its nonlinear optical properties modulated by a single alkali atom: A theoretical perspective. Inorg Chem 60:3131–3138

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y-F, Wang J-J, Li J, Liu X-X, Wang Z-J, Huang J, Li Z-R (2021) From an electride-like super alkali earth atom to a superalkalide or superalkali electride: M(HF)3M (M= Na or Li) as field-induced excellent inorganic NLO molecular switches. J Mater Chem C 9:14885–14896

    Article  CAS  Google Scholar 

  30. Hou J, Jiang D, Qin J, Duan Q (2018) Alkaline-earthide: a new class of excess electron compounds Li-C6H6F6-M (M= Be, Mg and Ca) with extremely large nonlinear optical responses. Chem Phys Lett 711:55–59

    Article  CAS  Google Scholar 

  31. Ahsin A, Ayub K (2022) Superalkali-based alkalides Li3O@[12-crown-4] M (where M= Li, Na, and K) with remarkable static and dynamic NLO properties; A DFT study. Mater Sci Semicond Process 138:106254

    Article  CAS  Google Scholar 

  32. Shakerzadeh E, Mashak Shabavi Z, Anota EC (2020) Enhanced electronic and nonlinear optical responses of C24N24 cavernous nitride fullerene by decoration with first row transition metals; A computational investigation. Appl Organomet Chem 34:e5694

    Article  CAS  Google Scholar 

  33. Chen W, Li Z-R, Wu D, Gu F-L, Hao X-Y, Wang B-Q, Li R-J, Sun C-C (2004) The static polarizability and first hyperpolarizability of the water trimer anion: ab initio study. J Chem Phys 121:10489–10494

    Article  PubMed  CAS  Google Scholar 

  34. Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2014) Do** the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg Chem 53:349–358

    Article  PubMed  CAS  Google Scholar 

  35. Frisch ME, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H (2016) Gaussian 16

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  37. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: A library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  38. Kitano M, Kuchitsu K (1973) Molecular structure of acetamide as studied by gas electron diffraction. Bull Chem Soc Jpn 46:3048–3051

    Article  CAS  Google Scholar 

  39. Szasz G, Kovacs A (1999) Investigation of the density-functional theory-derived scaled quantum mechanical method for cage-like systems: the vibrational analysis of adamantane. Mol Phys 96:161–167

    Article  CAS  Google Scholar 

  40. Tamagawa K, Iijima T, Kimura M (1976) Molecular structure of benzene. J Mol Struct 30:243–253

    Article  CAS  Google Scholar 

  41. Muz İ, Atiş M (2016) Structural transformations in the carborane series: CnB6−nH6 (n=0–6) upon substitution of boron by carbon. Inorganica Chim Acta 453:626–632

    Article  CAS  Google Scholar 

  42. Muz İ (2019) Structural transition of C6- nSinNH7 at n= 0–6 clusters upon substitution of carbon by silicon. Inorganica Chim Acta 495:118950

    Article  CAS  Google Scholar 

  43. Muz İ, Kurban M, Dalkilic M (2020) DFT and TD-DFT studies of new pentacene-based organic molecules as a donor material for bulk-heterojunction solar cells. J Comput Electron 19:895–904

    Article  CAS  Google Scholar 

  44. Shukla M, Verma A, Kumar S, Pal S, Sinha I (2021) Experimental and DFT calculation study of interaction between silver nanoparticle and 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid. Heliyon 7:e06065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Arshad MN, Khalid M, Asad M, Braga AA, Asiri AM, Alotaibi MM (2022) Influence of peripheral modification of electron acceptors in nonfullerene (O-IDTBR1)-based derivatives on nonlinear optical response: DFT/TDDFT study. ACS Omega 7:11631–11642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Muz İ (2019) Structural and electronic properties of B6-nCnHn (n=0-6) series upon the substitution of boron atoms by the C-H groups: a density functional theory study, Selcuk Univ. J Eng Sci Technol 7:467–477

    CAS  Google Scholar 

  47. Muz I, Kurban M (2018) Ab initio study of structural and electronic properties of SinC5-nH8 (n= 0–5) series: Probing the 2D to 3D structural transition. Inorganica Chim Acta 477:318–325

    Article  CAS  Google Scholar 

  48. Krongsuk S, Shinsuphan N, Amornkitbumrung V (2019) Effect of the alkali metal (Li, Na, K) substitution on the geometric, electronic and optical properties of the smallest diamondoid: First principles calculations. Chin J Chem Eng 27:476–482

    Article  CAS  Google Scholar 

  49. Weaver JR, Parry RW (1966) Dipole moment studies. I. Dipole moments in solution. Inorg Chem 5:703–710

    Article  CAS  Google Scholar 

  50. Oudar JD (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  51. Datta A, Pati SK (2006) Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. Chem Soc Rev 35:1305–1323

    Article  PubMed  CAS  Google Scholar 

  52. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  53. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  PubMed  CAS  Google Scholar 

  54. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  55. Li Y, Ullrich CA (2011) Time-dependent transition density matrix. Chem Phys 391:157–163

    Article  CAS  Google Scholar 

  56. Seth R, Jose DA, Yadav SK, Kumar R, Singh A (2022) Quest of new molecular frameworks for photoinduced carbon monoxide-releasing molecules: a computational prospective. Theor Chem Acc 141:1–11

    Article  Google Scholar 

Download references

Acknowledgements

Ajeet Singh acknowledge to SERB, New Delhi (Ref. no.: CRG/2019/001032) for financial support under the core research grant. SKY thanks to UGC-India, for financial support for junior research fellowship grant.

Author information

Authors and Affiliations

Authors

Contributions

SKY performed the study and wrote the manuscript and AS executed the idea of the research.

Corresponding author

Correspondence to Ajeet Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Singh, A. Molecular modeling and investigation of optoelectronic behaviour of metal substituted triamantane. Struct Chem 35, 349–360 (2024). https://doi.org/10.1007/s11224-023-02188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02188-y

Keywords

Navigation