Log in

Theoretical insights into the roles of intermolecular interactions in BTATz-based solvate cocrystals

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure, intermolecular interactions, electronic properties, and detonation performance of pure 3,6-Bis (1H-1,2,3,4tetrazol-5-ylamino)-s-tetrazine (BTATz) crystal and its three solvate cocrystals (solvents include 2-pyridone, DMF (N,N-dimethyl-formamide), and pyrazine) were studied using density functional theory and molecular dynamics. It is found that moderate N–H∙∙∙O or N–H∙∙∙N hydrogen bonds are the main forces for stabilizing the BTATz-based crystals. The BTATz/pyrazine cocrystal with face-face configuration, caused by big π-π conjugation, hydrogen bonds, and widespread vdW interactions, has the lowest impact sensitivity among the three solvate-cocrystals. Relatively, strong electron delocalization of H in BTATz induced by the pyrazine results in strong N–H∙∙∙N interactions in the BTATz/pyrazine cocrystal. Crystal packing types and hydrogen bonds affect the stability of the BTATz-based cocrystals. Our work may provide an insight into the property variation of the BTATz-based cocrystals under the influence of different solvents and is helpful for the design of new energetic solvate-cocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Saikia A, Sivabalan R, Polke BG, Gore GM, Singh A, Rao AS, Sikder AK (2009) Synthesis and characterization of 3,6-bis(1H–1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): novel high-nitrogen content insensitive high energy material. J Hazard Mater 170:306–313

    Article  CAS  PubMed  Google Scholar 

  2. Anniyappan M, Talawar MB, Sinha RK, Murthy KPS (2020) Review on advanced energetic materials for insensitive munition formulations. Combust, Explo, Shock+ 56(5):495–519

  3. Zhang CY, Jiao FB, Li HZ (2018) Crystal engineering for creating low sensitivity and highly energetic materials. Cryst Growth Des 18(10):5713–5726

    Article  CAS  Google Scholar 

  4. Jiao FB, **ong Y, Li HZ, Zhang CY (2018) Alleviating the energy & safety contradiction to construct new low sensitivity and highly energetic materials through crystal engineering. CrystEngComm 20:1757–1768

    Article  CAS  Google Scholar 

  5. Bu RP, Jiao FB, Liu GR, Zhao JY, Zhang CY (2020) Categorizing and understanding energetic crystals. Cryst Growth Des 21(1):3–15

    Article  Google Scholar 

  6. Bedard M, Huber H, Myers JL, Wright GF (1962) The crystalline form of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Candian J of Chem 40(12):2278–2299

    Article  CAS  Google Scholar 

  7. Wu Q, Li MQ, Hu QN, Zhang ZW, Zhu WH (2020) First-principle study and Hirshfeld surface analysis on the effect of H2O, NH3 and H2S on structural, electronic, elastic, optical and thermodynamic properties of a novel high-energy crystal 2,4,6-triamino-5-nitropyrimidine-1,3-dioxide. J Mater Sci 55:237–249

    Article  CAS  Google Scholar 

  8. Zhang JH, Shreeve JM (2016) Time for pairing: cocrystals as advanced energetic materials. CrystEngComm 18:6124–6133

    Article  CAS  Google Scholar 

  9. Landenberger KB, Matzger AJ (2010) Cocrystal engineering of a prototype energetic material supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  10. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Edit 50:8960–8963

    Article  CAS  Google Scholar 

  11. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  12. Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5079

    Article  CAS  PubMed  Google Scholar 

  13. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Edit 52:6468–6471

    Article  CAS  Google Scholar 

  14. Liu GR, Bu RP, Huang X, Zhong K, Jiao FB, Wei SH, Li HZ, Zhang CY (2022) Energetic cocrystallization as the most significant crystal engineering way to create new energetic materials. Cryst Growth Des 22:954–970

    Article  CAS  Google Scholar 

  15. Selig W (1982) New adducts of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Propel, Explo, Pyro 7:70–77

    Article  CAS  Google Scholar 

  16. Selig W (1982) New adducts of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX). Propel, Explo, Pyro 6:1–4

    Google Scholar 

  17. Liu Y, Li SC, Xu JJ, Zhang HL, Guan YX, Jiang HY, Huang SL, Huang H, Wang ZS (2018) Three energetic 2,2 ’,4,4 ’,6,6 ’-hexanitrostilbene cocrystals regularly constructed by H-bonding, pi-stacking, and van der Waals interactions. Cryst Growth Des 18:1940–1943

    Article  CAS  Google Scholar 

  18. Aakeroy CB, Wijethunga TK, Desper J (2015) Crystal engineering of energetic materials: co-crystals of ethylenedinitramine (EDNA) with modified performance and improved chemical stability. Chem-Eur J 21:11029–11037

    Article  PubMed  Google Scholar 

  19. Liu GR, Wei SH, Zhang CY (2020) Review of the intermolecular interactions in energetic molecular cocrystals. Cryst Growth Des 20:7065–7079

    Article  CAS  Google Scholar 

  20. Zhao X, Zhu W (2022) Recent advances in studying the nonnegligible role of noncovalent interactions in various types of energetic molecular crystals. CrystEngComm 24:6119–6136

    Article  CAS  Google Scholar 

  21. Fedyanin IV, Lyssenko KA, Fershtat LL, Muravyev NV, Makhova NN (2019) Crystal solvates of energetic 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane molecule with [bmim]-based ionic liquids. Cryst Growth Des 19:3660–3669

    Article  CAS  Google Scholar 

  22. Fondren NS, Fondren ZT, Unruh DK, Maiti A, Cozzolino A, Lee YJ, Hope-Weeks L, Weeks B (2020) Study of physicochemical and explosive properties of a 2,4,6-trinitrotoluene/aniline cocrystal solvate. Cryst Growth Des 20(1):116–129

    Article  CAS  Google Scholar 

  23. Loschen C, Klamt A (2015) Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. J Pharm Pharmacol 67:803–811

    Article  CAS  PubMed  Google Scholar 

  24. Chapman CJ, Groven LJ (2021) Evaluation of solvate and co-crystal screening methods for CL-20 containing energetic materials. J of Ener Mater 40:258–272

    Article  Google Scholar 

  25. Landenberger KB, Matzger AJ (2012) Cocrystals of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 12:3603–3609

    Article  CAS  Google Scholar 

  26. Wang K, Zhu WH (2021) Computational insights into the formation driving force of CL-20 based solvates and their desolvation process. CrystEngComm 23:2150–2161

    Article  CAS  Google Scholar 

  27. Chavez DE, Hiskey MA, Naud DL (2004) Tetrazine explosives. Propel, Explo, Pyro 29:209–215

    Article  CAS  Google Scholar 

  28. Zhang ZB, Li T, Yin L, Yin X, Zhang JG (2016) A novel insensitive cocrystal explosive BTO/ATZ: preparation and performance. RSC Adv 6:76075–76083

    Article  CAS  Google Scholar 

  29. Son SF, Berghout HL, Bolme CA, Chavez DE, Naud D, Hiskey MA (2000) Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc of Combust Inst 28:919–924

    Article  CAS  Google Scholar 

  30. Kent RV, Wiscons RA, Sharon P, Grinstein D, Frimer AA, Matzger AJ (2017) Cocrystal engineering of a high nitrogen energetic material. Cryst Growth Des 18:219–224

    Article  Google Scholar 

  31. Segall MD, Lindan PJD, Lindan MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condensed Matter 14:2717–2744

    CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  34. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  35. Keshavarz MH (2007) Reliable estimation of performance of explosives without considering their heat contents. J Hazard Mater 147:826–831

    Article  CAS  PubMed  Google Scholar 

  36. Keshavarz MH (2010) Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics. Propel, Explo, Pyro 35:175–181

    Article  CAS  Google Scholar 

  37. Spackman AMJD (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  38. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  39. Lu T, Chen FW (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graphics Modell 38:314–323

    Article  Google Scholar 

  40. Lu T, Chen Q (2020) A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor Chem Acc 139:25–37

    Article  CAS  Google Scholar 

  41. Emamian S, Lu T, Kruse H, Emamian H (2019) Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J Comput Chem 40:2868–2881

    Article  CAS  PubMed  Google Scholar 

  42. Shishkina AV, Zhurov VV, Stash AI, Vener MV, Pinkerton AA, Tsirelson VG (2013) Noncovalent interactions in crystalline picolinic acid n-oxide: insights from experimental and theoretical charge density analysis. Cryst Growth Des 13:816–828

    Article  CAS  Google Scholar 

  43. Bu RP, **ong Y, Zhang CY (2020) π–π stacking contributing to the low or reduced impact sensitivity of energetic materials. Cryst Growth Des 20:2824–2841

    Article  CAS  Google Scholar 

  44. Tian BB, **ong Y, Chen LZ, Zhang CY (2018) Relationship between the crystal packing and impact sensitivity of energetic materials. CrystEngComm 20:837–848

    Article  CAS  Google Scholar 

  45. Stalke D (2011) Meaningful structural descriptors from charge density. Chem-Eur J 17:9264–9278

    Article  CAS  PubMed  Google Scholar 

  46. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) Reavealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kretic DS, Radovanovic JI, Veljkovic DZ (2021) Can the sensitivity of energetic materials be tuned by using hydrogen bonds? Another look at the role of hydrogen bonding in the design of high energetic compounds. Phys Chem Chem Phys 23:7472–7479

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Defu Wang and Kun Wang. The first draft of the manuscript was written by Defu Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihua Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, K. & Zhu, W. Theoretical insights into the roles of intermolecular interactions in BTATz-based solvate cocrystals. Struct Chem 34, 1685–1697 (2023). https://doi.org/10.1007/s11224-022-02084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02084-x

Keywords

Navigation