Log in

Antioxidant activities of Alyssum virgatum plant and its main components

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The antioxidant properties of methanol extract of above-ground parts of Alyssum virgatum, an endemic plant, were analyzed. Together with their total phenolic, flavonoid, and antioxidant capacities, their effects on reactive oxygen species were determined by experimental methods. The methanol extracts of A. virgatum plant appeared to exhibit in-vitro antioxidant activity. In particular, the extract of the plant was found to have a scavenging effect against hydrogen peroxide and hydroxyl radical. Total phenolic content was found to be 161.25 mg gallic acid per gram dry material. Total flavonoid content was found to be 119.89 mg quercetin per gram dry material. Total antioxidant capacity was determined as 94.92 mM α-tocopherol acetate per gram dry material. Moreover, the amount of the extract that caused 50% inhibition of hydrogen peroxide and hydroxyl radical was assayed as 29.24 mg mL−1 and 46.04 mg mL−1, respectively.

Addition to the experimental studies, DFT, molecular docking, and ADME calculations were performed to determine antioxidant, biological activity, and drug properties of two main phenolic components of A. virgatum which are cinnamic acid and ferulic acid. DFT calculations were executed at B3LYP/6–311 +  + G(d,p) level in Gaussian 16 software. The HAT, SET-PT, SPLET mechanisms, and the spin density analyses of the main components were investigated in detail. Molecular docking studies of the investigated main components were executed on the antioxidant proteins in Schrodinger 2020–3 program. Additionally, ADME properties of the mentioned main components were determined via QikProp module in the Schrodinger software. All theoretical studies showed that ferulic acid had better antioxidant, biological, and drug activities than cinnamic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

N/A.

Code availability

GaussView 6.0, Gaussian 16, Schrodinger 2020–3.

References

  1. Sharma HK, Kumar A, Singh V, Meena H, Meena B, Sharma P, Rai P (2022) Genetic resources of Brassicas. Cash Crops. Springer 285–337

  2. Al-Shehbaz IA (2021) Nomenclatural Adjustments in Eutrema, Ceratocnemum, Rhamphospermum, and Sinapis (Brassicaceae, Cruciferae). Harv Pap Bot 26:1–4

    Article  Google Scholar 

  3. Dueli GF, DeSouza O, Ribeiro SP (2021) Metal bioaccumulation alleviates the negative effects of herbivory on plant growth. Sci Rep 11:1–11

    Article  Google Scholar 

  4. Malik G, Hooda S, Majeed S, Pandey VC (2022) Understanding assisted phytoremediation: potential tools to enhance plant performance. Assisted Phytoremediation. Elsevier 1–24

  5. Ahlawat Y, Li S, Timilsena PR, Pliakoni ED, Brecht JK, Liu T (2022) Identification of senescence-associated genes in broccoli (Brassica oleracea) following harvest. Postharvest Biol Technol 183:111729

  6. Vaughn SF, Berhow MA (2005) Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod 21:193–202

    Article  CAS  Google Scholar 

  7. Kim YS, Milner J (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16:65–73

    Article  CAS  PubMed  Google Scholar 

  8. Al-Shehbaz I, Beilstein MA, Kellogg E (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  9. Orcan N, Binzet R (2009) Alyssum misirdalianum (Brassicaceae), a new species from Southern Turkey. Novon: A J Botanical Nomenclature 19:494–496

  10. Güner A, Aslan S (2012) Türkiye bitkileri listesi:(damarlı bitkiler). Nezahat Gökyiǧit Botanik Bahçesi Yayınları

  11. Taiz L, Zeiger E (2010) Responses and adaptations to abiotic stress. Sinauer Associates, Inc, Plant Physiology, Fifth Edition Sunderland, MA, pp 755–778

    Google Scholar 

  12. Hegeman AD (2010) Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9:139–148

    Article  CAS  PubMed  Google Scholar 

  13. Dewick PM (2002) Medicinal natural products: a biosynthetic approach. John Wiley & Sons

    Google Scholar 

  14. Ozay C, Mammadov R (2016) Assessment of some bıologıcal actıvıtıes of alyssum l. Known as madwort Acta poloniae pharmaceutica 73:1213–1220

    CAS  PubMed  Google Scholar 

  15. Rahuman MH, Muthu S, Raajaraman BR, Raja M (2020) Quantum computational, spectroscopic and molecular docking studies on 2-acetylthiophene and its bromination derivative. J Mol Struc 1212:128129

  16. Loganathan L, Natarajan K, Muthusamy K (2019) Computational study on cross-talking cancer signalling mechanism of ring finger protein 146, AXIN and Tankyrase protein complex. J Biomol Struct Dyn 38(17):5173–5185

    Article  PubMed  Google Scholar 

  17. Dhevaraj J, Gopalakrishnan M, Pazhamalai S (2019) Synthesis, characterization, molecular docking, ADME and biological evaluation of 3-(4-(tetrazol-1-yl)phenyl)-5-phenyl-1H-pyrazoles. J Mol Struct 1193:450–467

    Article  CAS  Google Scholar 

  18. Singh SP, Singh NI, Nongalleima K, Doley P, Singh CB, Sahoo D (2018) Molecular docking, MD simulation, DFT and ADME-toxicity study on analogs of zerumbone against IKK-ss enzyme as anti-cancer agents. Netw Model Anal Hlth 7(1):1–8

    Google Scholar 

  19. Elancheran R, Saravanan K, Divakar S, Kumari S, Maruthanila VL, Kabilan S, Ramanathan M, Devi R, Kotoky J (2017) Design, synthesis and biological evaluation of novel 1, 3-thiazolidine-2, 4-diones as anti-prostate cancer agents. Anti-Cancer Agent Me 17:1756–1768

    CAS  Google Scholar 

  20. Abdel-Kader NS, Abdel-Latif SA, El-Ansary AL, Sayed AG (2019) Combined experimental, DFT theoretical calculations and biological activity of sulfaclozine azo dye with 1-hydroxy-2-naphthoic acid and its complexes with some metal ions. New J Chem 43:17466–17485

    Article  CAS  Google Scholar 

  21. Krishnan KG, Ashothai P, Padmavathy K, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C (2019) Hydrazide-integrated carbazoles: synthesis, computational, anticancer and molecular docking studies. New J Chem 43:12069–12077

    Article  CAS  Google Scholar 

  22. Khan SA, Rizwan K, Shahid S, Noamaan MA, Rasheed T, Amjad H (2020) Synthesis, DFT, computational exploration of chemical reactivity, molecular docking studies of novel formazan metal complexes and their biological applications. Appl Organomet Chem 34(3):e5444

  23. Kuruvilla TK, Muthu S, Prasana JC, George J, Saji RS, Geoffrey B, David, RHA (2019) Molecular docking, spectroscopic studies on 4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one and QSAR study of a group of dopamine agonists by density functional method. Spectrochim Acta A 222:117185

  24. Abrigach F, Karzazi Y, Benabbes R, El Youbi M, Khoutoul M, Taibi N, Karzazi N, Benchat N, Bouakka M, Saalaoui E (2017) Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds. Med Chem Res 26:1784–1795

    Article  CAS  Google Scholar 

  25. Ungordu A, Tezer N (2017) The solvent (water) and metal effects on HOMO-LUMO gaps of guanine base pair: a computational study. J Mol Graph Model 74:265–272

    Article  CAS  PubMed  Google Scholar 

  26. Tezer N (2009) Density functional theory and ab-initio computational study of molecular structure, tautomerism, and geometrical isomerism of ethynyl-bridged dipyridinones: in the gas phase and dielectric media. J Mol Struc-Theochem 895:100–106

    Article  CAS  Google Scholar 

  27. Lone SH, Bhat MA, Lone RA, Jameel S, Lone JA, Bhat KA (2018) Hemisynthesis, computational and molecular docking studies of novel nitrogen containing steroidal aromatase inhibitors: testolactam and testololactam. New J Chem 42:4579–4589

    Article  CAS  Google Scholar 

  28. Polo E, Ibarra-Arellano N, Prent-Penaloza L, Morales-Bayuelo A, Henao J, Galdamez A, Gutierrez M (2019) Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg Chem 90:103034

  29. Abrigach F, Rokni Y, Takfaoui A, Khoutoul M, Doucet H, Asehraou A, Touzani R (2018) In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed Pharmacother 103:653–661

    Article  CAS  PubMed  Google Scholar 

  30. Kaddouri Y, Abrigach F, Ouahhoud S, Benabbes R, El Kodadi M, Alsalme A, Al-Zaqri N, Warad I, Touzani, R (2021) Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg Chem 110:104696

  31. Kaddouri Y, Abrigach F, Yousfi EB, Hammouti B, El Kodadi M, Alsalme A, Al-Zaqri N, Warad I, Touzani R (2021) New heterocyclic compounds: synthesis, antioxidant activity and computational ınsights of nano-antioxidant as ascorbate peroxidase ınhibitor by various cyclodextrins as drug delivery systems. Curr Drug Deliv 18:334–349

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, You ZH, Li LP, Yan X, Zhang W, Song KJ, Song CD (2020) Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures. Chem Biol Drug Des 96(2):758–767

    Article  CAS  PubMed  Google Scholar 

  33. Zahran EM, Abdelmohsen UR, Shalash MM, Salem MA, Khalil HE, Desoukey SY, Fouad MA, Krischke M, Mueller M, Kamel MS (2020) Local anaesthetic potential, metabolic profiling, molecular docking and in silico ADME studies of Ocimum forskolei, family Lamiaceae. Nat Prod Res 1–7

  34. Zhang J, Shan YY, Pan XY, Wang C, Xu WF, He LC (2011) Molecular docking, 3D-QSAR studies, and ın silico ADME prediction of p-aminosalicylic acid derivatives as neuraminidase ınhibitors. Chem Biol Drug Des 78:709–717

    Article  CAS  PubMed  Google Scholar 

  35. Kaddouri Y, Bouchal B, Abrigach F, El Kodadi M, Bellaoui M, Touzani R (2021) Synthesis, molecular docking, MEP and SAR analysis, ADME-Tox predictions, and antimicrobial evaluation of novel mono-and tetra-alkylated pyrazole and triazole ligands. J Chem 2021

  36. Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sökmen A, Akpulat HA (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–220

    Article  CAS  PubMed  Google Scholar 

  37. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  38. Lamaison J, Carnat A, Petitjean-Freytet C (1990) Tannin content and inhibiting activity of elastase in Rosaceae. Ann Pharm Fr 48:335–340

    CAS  PubMed  Google Scholar 

  39. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  40. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cyto-toxicity and ınhibition of ıntercellular communication by antioxidant catechins ısolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  CAS  PubMed  Google Scholar 

  41. Yu WL, Zhao YP, Shu B (2004) The radical scavenging activities of radix puerariae isoflavonoids: a chemiluminescence study. Food Chem 86:525–529

    Article  CAS  Google Scholar 

  42. Marković Z, Milenković D, Đorović J, Marković JMD, Stepanić V, Lučić B, Amić D (2012) PM6 and DFT study of free radical scavenging activity of morin. Food chem 134:1754–1760

    Article  PubMed  Google Scholar 

  43. Benayahoum A, Bouakkaz S, Bordjiba T, Abdaoui M (2019) Antioxidant activity and pKa calculations of 4-mercaptostilbene and some derivatives: a theoretical approach. J Mol Liq 275:221–231

    Article  CAS  Google Scholar 

  44. Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK (2020) Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep 10:1–9

    Google Scholar 

  45. Shaikh SAM, Singh BG, Barik A, Balaji NV, Subbaraju GV, Naik DB, Priyadarsini KI (2019) Unravelling the effect of β-diketo group modification on the antioxidant mechanism of curcumin derivatives: a combined experimental and DFT approach. J Mol Struct 1193:166–176

    Article  CAS  Google Scholar 

  46. Koç E, Üngördü A, Candan F (2019) Antioxidant properties of methanolic extract of ‘Veronica multifida’ and DFT and HF analyses of its the major flavonoid component. J Mol Struct 1197:436–442

    Article  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko, BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith, TA, Kobayashi, R, Normand, J, Raghavachari, K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. C.01. Wallingford, CT

  48. Dennington R, Keith T, Millam J (2016) GaussView 6.0. 16, Semichem. Inc, Shawnee Mission KS

  49. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  51. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306

    Article  CAS  PubMed  Google Scholar 

  52. Ahmad F, Alam MJ, Alam M, Azaz S, Parveen M, Park S, Ahmad S (2018) Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative. J Mol Struct 1151:327–342

    Article  CAS  Google Scholar 

  53. Ali A, Asif M, Alam P, Alam MJ, Sherwani MA, Khan RH, Ahmad S (2017) DFT/B3LYP calculations, in vitro cytotoxicity and antioxidant activities of steroidal pyrimidines and their interaction with HSA using molecular docking and multispectroscopic techniques. Bioorg Chem 73:83–99

    Article  CAS  PubMed  Google Scholar 

  54. Najafi M, Najafi M, Najafi H (2012) DFT/B3LYP study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of Indole-3-carbinol derivatives in the gas-phase and water. Comput Theor Chem 999:34–42

    Article  CAS  Google Scholar 

  55. Ungordu A, Tezer N (2017) Effect on frontier molecular orbitals of substituents in 5-position of uracil base pairs in vacuum and water. J Theor Comput Chem 16(07):1750066

    Article  Google Scholar 

  56. Ungordu A, Tezer N (2017) DFT study on metal-mediated uracil base pair complexes. J Saudi Chem Soc 21:837–844

    Article  CAS  Google Scholar 

  57. Fiorucci S, Golebiowski J, Cabrol-Bass D, Antonczak S (2007) DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. J Agric Food Chem 55:903–911

    Article  CAS  PubMed  Google Scholar 

  58. Klein E, Lukeš V, Ilčin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57

    Article  CAS  Google Scholar 

  59. Klein E, Lukeš V (2006) DFT/B3LYP study of O-H bond dissociation enthalpies of para and meta substituted phenols: correlation with the phenolic C–O bond length. J Mol Struct (Thoechem) 767:43–50

    Article  CAS  Google Scholar 

  60. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420–6424

    Article  CAS  Google Scholar 

  61. Klein E, Rimarcik J, Lukes V (2009) DFT/B3LYP study of the O-H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene. Acta Chim Slovaca 2:37–51

    Google Scholar 

  62. Retailleau P, Colloc’h N, Vivarès D, Bonneté F, Castro B, El Hajji M, Mornon JP, Monard G, Prangé T, (2004) Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D Biol Crystallogr 60:453–462

    Article  PubMed  Google Scholar 

  63. Han S, Mistry A, Chang JS, Cunningham D, Griffor M, Bonnette PC, Wang H, Chrunyk BA, Aspnes GE, Walker DP (2009) Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J Biol Chem 284:13193–13201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195:701–729

    Article  CAS  PubMed  Google Scholar 

  65. Schrödinger Release 2020–3 (2020) Maestro. Schrödinger, LLC

  66. Schrödinger Release 2020–3 (2020) QikProp. Schrödinger, LLC

  67. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with co-existing substances. VI.: effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37:2016–2021

    Article  CAS  Google Scholar 

  68. Albayrak S, Atasagun B, Aksoy A (2017) Comparison of phenolic components and biological activities of two Centaurea sp. obtained by three extraction techniques. Asian Pac J Trop Med 10:599–606

    Article  CAS  PubMed  Google Scholar 

  69. Zengin G, Atasagun B, Aumeeruddy MZ, Saleem H, Mollica A, Bahadori MB, Mahomoodally MF (2019) Phenolic profiling and in vitro biological properties of two Lamiaceae species (Salvia modesta and Thymus argaeus): a comprehensive evaluation. Ind Crops Prod 128:308–314

    Article  CAS  Google Scholar 

  70. de Ancos B, González EM, Cano MP (2000) Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J Agric Food Chem 48:4565–4570

    Article  PubMed  Google Scholar 

  71. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Silva FA, Borges F, Guimarães C, Lima JL, Matos C, Reis S (2000) Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J Agric Food Chem 48:2122–2126

    Article  CAS  PubMed  Google Scholar 

  73. Ramanathan K, Anusuyadevi M, Shila S, Panneerselvam C (2005) Ascorbic acid and α-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol Lett 156:297–306

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Barraza KM, Beauchamp J (2017) Field-induced droplet ionization illuminates stepwise oxidation of cell membrane lipids by hydroxyl radicals at the air-water interface. In: 254th American Chemical Society National Meeting & Exposition, August 20–24, Washington, DC

Download references

Acknowledgements

We convey our special thanks to Dr. Bayram ATASAGUN (Selçuk University, Department of Vocational School of Health Services) identifying the plant species of this research.

Funding

This work is supported by the Scientific Research Project Fund of Sivas Cumhuriyet University under the project number RGD-020. The numerical calculations reported in this paper were fully/partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Contributions

Emre Koç: Conceptualization, methodology, software, formal analysis, investigation, writing — original draft, writing — review and editing; Ayhan Üngördü: Conceptualization, methodology, software, formal analysis, investigation, writing — original draft, writing — review and editing, visualization; Ferda Candan: investigation, writing — review and editing, supervision.

Corresponding authors

Correspondence to Emre Koç or Ayhan Üngördü.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, E., Üngördü, A. & Candan, F. Antioxidant activities of Alyssum virgatum plant and its main components. Struct Chem 33, 267–279 (2022). https://doi.org/10.1007/s11224-021-01856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01856-1

Keywords

Navigation