Log in

The self-organizing vector of atom-pairs proportions: use to develop models for melting points

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Atom-pairs proportions are the transparent quality of a molecule: if a molecule has two atoms of oxygen and three atoms of nitrogen, the atom-pair atom1-atom2 can be expressed as a code “atom1-atom2-n1-n2,” indicating the different atoms and their numbers. These codes for a group of atoms (nitrogen, oxygen, sulfur, phosphorus, fluorine, chlorine, bromine, as well as double and triple covalent bonds) are applied to build up the so-called optimal molecular descriptor calculated with special coefficients named correlation weights of corresponding pairs. The numerical data on the correlation weights are calculated by the Monte Carlo technique using the CORAL software (http://www.insilico.eu/coral). The one-variable model for melting points of 8653 different organic compounds is characterized by the following statistical quality: n=6483, r2=0.6452, RMSE=61.9°C; n=2170, r2=0.7941, RMSE=39.2°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data are available within the article or its supplementary materials.

Code availability

CORAL software (http://www.insilico.eu/coral)

References

  1. Tetko IV, Sushko Y, Novotarskyi S, Patiny L, Kondratov I, Petrenko AE, Charochkina L, Asiri AM (2014) How accurately can we predict the melting points of drug-like compounds? J Chem Inf Model 54(12):3320–3329. https://doi.org/10.1021/ci5005288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tetko IV, Yan A, Gasteiger J (2018) Prediction of physicochemical properties of compounds. In: Engel T, Gasteiger J (eds) Applied Chemoinformatics, Chapter 3, pp 53–81. https://doi.org/10.1002/9783527806539.ch3

    Chapter  Google Scholar 

  3. Yan F, Shi Y, Wang Y, Jia Q, Wang Q, **a S (2020) QSPR models for the properties of ionic liquids at variable temperatures based on norm descriptors. Chem Eng Sci 217:115540. https://doi.org/10.1016/j.ces.2020.115540

    Article  CAS  Google Scholar 

  4. ten Berge W (2009) A simple dermal absorption model: derivation and application. Chemosphere 75(11):1440–1445. https://doi.org/10.1016/j.chemosphere.2009.02.043

    Article  CAS  PubMed  Google Scholar 

  5. Dearden JC (1991) The QSAR prediction of melting point, a property of environmental relevance. Sci Total Environ 109–110:59–68. https://doi.org/10.1016/0048-9697(91)90170-J

    Article  PubMed  Google Scholar 

  6. Dearden JC (2003) Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem 22:1696–1709. https://doi.org/10.1897/01-363

    Article  CAS  PubMed  Google Scholar 

  7. Brown TN, Armitage JM, Arnot JA (2019) Application of an iterative fragment selection (IFS) method to estimate entropies of fusion and melting points of organic chemicals. Mol Inform 38(8-9):1800160. https://doi.org/10.1002/minf.201800160

    Article  CAS  Google Scholar 

  8. McDonagh JL, Van Mourik T, Mitchell JBO (2015) Predicting melting points of organic molecules: applications to aqueous solubility prediction using the general solubility equation. Mol Inform 34(11-12):715–724. https://doi.org/10.1002/minf.201500052

    Article  CAS  PubMed  Google Scholar 

  9. Venkatraman V, Evjen S, Knuutila HK, Fiksdahl A, Alsberg BK (2018) Predicting ionic liquid melting points using machine learning. J Mol Liq 264:318–326. https://doi.org/10.1016/j.molliq.2018.03.090

    Article  CAS  Google Scholar 

  10. Fatemi MH, Izadian P (2012) In silico prediction of melting points of ionic liquids by using multilayer perceptron neural networks. J Theor Comput Chem 11(1):127–141. https://doi.org/10.1142/S0219633612500083

    Article  CAS  Google Scholar 

  11. Park HY, Li J, Park B-H, Kim CK (2015) MSEP and CoMFA studies on the melting points of nitroaromatic compounds. Bull Kor Chem Soc 36(7):1838–1847. https://doi.org/10.1002/bkcs.10356

    Article  CAS  Google Scholar 

  12. Hemmateenejad B, Shamsipur M, Zare-Shahabadi V, Akhond M (2011) Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points. Anal Chim Acta 704(1-2):57–62. https://doi.org/10.1016/j.aca.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  13. Bhat AU, Merchant SS, Bhagwat SS (2008) Prediction of melting points of organic compounds using extreme learning machines. Ind Eng Chem Res 47(3):920–925. https://doi.org/10.1021/ie0704647

    Article  CAS  Google Scholar 

  14. Kang J-W, Kwon OK, Lee S, Lee SH, Kim DH, Hwang H-J (2010) Kinetic lattice Monte Carlo simulations of vacancy diffusion in silicon below the melting point. J Comput Theor Nanosci 7(3):604–611. https://doi.org/10.1166/jctn.2010.1401

    Article  CAS  Google Scholar 

  15. Karthikeyan M, Glen RC, Bender A (2005) General melting point prediction based on a diverse compound data set and artificial neural networks. Chem Inf Model 45(3):581–590. https://doi.org/10.1021/ci0500132

    Article  CAS  Google Scholar 

  16. Toropova AP, Toropov AA (2014) CORAL software: prediction of carcinogenicity of drugs by means of the Monte Carlo method. Eur J Pharm Sci 52(1):21–25. https://doi.org/10.1016/j.ejps.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Garro Martinez JC, Duchowicz PR, Estrada MR, Zamarbide GN, Castro EA (2011) QSAR study and molecular design of open-chain enaminones as anticonvulsant agents. Int J Mol Sci 12(12):9354–9368. https://doi.org/10.3390/ijms12129354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Achary PGR (2014) Simplified molecular input line entry system-based optimal descriptors: QSAR modelling for voltage-gated potassium channel subunit Kv7.2. SAR QSAR Environ Res 25(1):73–90. https://doi.org/10.1080/1062936X.2013.842930

    Article  CAS  PubMed  Google Scholar 

  19. Toropov AA, Toropova AP, Carnesecchi E, Benfenati E, Dorne JL (2020) The index of ideality of correlation and the variety of molecular rings as a base to improve model of HIV-1 protease inhibitors activity. Struct Chem 31:1441–1448. https://doi.org/10.1007/s11224-020-01525-9

    Article  CAS  Google Scholar 

  20. Toropov AA, Toropova AP, Veselinović AM, Leszczynska D, Leszczynski J (2020) SARS-CoV Mpro inhibitory activity of aromatic disulfide compounds: QSAR model. J Biomol Struct Dyn Published online: 09 Sep 2020. https://doi.org/10.1080/07391102.2020.1818627

  21. Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017) Development of a Sigma-2 receptor affinity filter through a Monte Carlo based QSAR analysis. Eur J Pharm Sci 106:94–101. https://doi.org/10.1016/j.ejps.2017.05.061

    Article  CAS  PubMed  Google Scholar 

  22. Veselinović AM, Veselinović JB, Živković JV, Nikolić GM (2015) Application of smiles notation based optimal descriptors in drug discovery and design. Curr Top Med Chem 15(18):1768–1779. https://doi.org/10.2174/1568026615666150506151533

    Article  CAS  PubMed  Google Scholar 

  23. Toropov AA, Toropova AP (2021) Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles. Sci Total Environ 772:145532. https://doi.org/10.1016/j.scitotenv.2021.145532

    Article  CAS  PubMed  Google Scholar 

  24. Mansouri K, Grulke CM, Judson RS, Williams AJ (2018) OPERA models for predicting physicochemical properties and environmental fate endpoints. Aust J Chem 10(1):10. https://doi.org/10.1186/s13321-018-0263-1

    Article  CAS  Google Scholar 

  25. Toropov AA, Toropova AP (2017) The index of ideality of correlation: a criterion of predictive potential of QSPR/QSAR models? Mutat Res 819:31–37. https://doi.org/10.1016/j.mrgentox.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  26. Toropova AP, Toropov AA (2019) Does the index of ideality of correlation detect the better model correctly? Mol Inform 38(8-9):1800157. https://doi.org/10.1002/minf.201800157

    Article  CAS  Google Scholar 

  27. Watkins M, Sizochenko N, Rasulev B, Leszczynski J (2016) Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach. J Mol Model 22(3):1–14. https://doi.org/10.1007/s00894-016-2917-0

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the contribution of the project LIFE-CONCERT (LIFE17 GIE/IT/000461) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. P. T., A. A. T., and E. B.

Methodology: A. P. T., A. A. T., and E. B.

Software: A. A. T..

Validation: A. P. T., A. A. T., and E. B.

Formal analysis: A. P. T.

Data curation: A. P. T. and A. A. T.

Writing—original draft preparation: A. P. T. and A. A. T.

Writing—review and editing: A. P. T., A. A. T., and E. B.

Supervision: E. B.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alla P. Toropova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, A.P., Toropov, A.A. & Benfenati, E. The self-organizing vector of atom-pairs proportions: use to develop models for melting points. Struct Chem 32, 967–971 (2021). https://doi.org/10.1007/s11224-021-01778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01778-y

Keywords

Navigation