Log in

An integrated quantum chemical and experimental approach for exploring the structures and properties of insensitive munitions interacting with ions in bulk water

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Alternatives to legacy munitions and explosives, materials that feature increased stability against external stimuli without compromising their energetic yields are currently being developed. The environmental interactions of such energetic materials need to be addressed, especially as their use becomes more widespread. In order to explore such compounds with environmental influences in mind, we assess the electronic structure and properties of these insensitive munitions (IMs) compounds in modeled hard water using both theory and experiment. To model the IMs in hard water, we have used density functional theory with the M06-2X functional and the 6-311 + G(d,p) basis set with explicit water molecules to capture features like hydrogen bonding, implicit solvent to incorporate bulk water effects, and select ions that would be present in natural water. We ensured the nature of the potential energy surfaces of optimized geometries through vibrational frequency calculations under the harmonic approximation. Several electronic properties, such as oxidation and reduction potentials and electron affinity and ionization potential, for each system are presented. Additionally, cyclic voltammetry experiments were performed, and obtained results were compared with quantum chemical predictions. The experimental reduction potentials are found to be in good agreement with the predicted results. Overall, the reduction potentials predicted by density functional theory for the IM-ion-water complexes are shifted compared with the corresponding isolated munition such that reduction or oxidation would be more facile in the presence of water and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richard RM, Ball DW (2008) . J Mol Struct Theochem 851:284–293

    Article  CAS  Google Scholar 

  2. Hu T-P, Ren F-D, Ren J (2009) . J Mol Struct Theochem 909:13–18

    Article  CAS  Google Scholar 

  3. Qiu L, Gong X, Zheng J, Ziao H (2009) . J Hazard Mater 166:931–938

    Article  CAS  Google Scholar 

  4. Taylor S, Park E, Bullion K, Dontsova K (2015) . Chemosphere 119:342–348

    Article  CAS  Google Scholar 

  5. Boddu VM, Abburi K, Maloney SW, Damavarapu R (2008) . J Chem Eng Data 53:1120–1125

    Article  CAS  Google Scholar 

  6. Sviatenko LK, Gorb L, Hill FC, Leszczynska D, Leszczynski J (2016) . J Comput Chem 37:1206–1213

    Article  CAS  Google Scholar 

  7. Batz ML, Garland PM, Reiter RC, Sanborn MDS, Stevenson CD (1997) . J Org Chem 62:2045–2049

    Article  CAS  Google Scholar 

  8. Du S, Wang Y, Che L-Z, Shi W-J, Ren F-D, Li Y-X, Wang J-L, Cao D-L (2012) . J Mol Model 18:2105–2115

    Article  CAS  Google Scholar 

  9. Sviatenko L, Isayev O, Gorb L, Hill F, Leszczynski J (2011) . J Comput Chem 32:2195–2203

    Article  CAS  Google Scholar 

  10. Phillips KL, Sandler SI, Chiu PC (2011) . J Comput Chem 32:226–239

    Article  CAS  Google Scholar 

  11. Sviatenko LK, Isayev O, Gorb L, Hill FC, Leszczynska D, Leszczynski J (2015) . J Comput Chem 36:1029–1035

    Article  CAS  Google Scholar 

  12. Sviatenko LK, Gorb L, Hill FC, Leszczynski J (2013) . J Comput Chem 34:1094–1100

    Article  CAS  Google Scholar 

  13. Jenness GR, Sieter J, Shukla MK (2017) . Phys Chem Chem Phys 20:18850–18861

    Article  Google Scholar 

  14. Dang LX, Rice JE, Caldwell J, Knollman PA (1991) . J Am Chem Soc 113:2481–2486

    Article  CAS  Google Scholar 

  15. Stuart SJ, Berne B (1996) . J Phys Chem 100:11934–11943

    Article  CAS  Google Scholar 

  16. Carignano M, Karlström G, Linse P (1997) . J Phys Chem B 101:1142–1147

    Article  CAS  Google Scholar 

  17. Burda JV, Šponer J, Leszczynski J, Hobza P (1997) . J Phys Chem B 101:9670–9677

    Article  CAS  Google Scholar 

  18. Šponer J., Burda JV, Sabat M, Leszczynski J, Hobza P (1998) . J Phys Chem A 102:5951–5957

    Article  Google Scholar 

  19. Ayala R, Martinez JM, Pappalardo RR, Sanches M (2000) . E. J Chem Phys A 104:2799–2807

    Article  CAS  Google Scholar 

  20. Lee HM, Tarakeshwar P, Park J, Kolaski MR, Yoon YJ, Yi H-B, Kim Y, Kim KS (2004) . J Phys Chem A 108:2949–2958

    Article  CAS  Google Scholar 

  21. Dauster I, Suhm MA, Buck U, Zeuch T (2007) . Phys Chem Chem Phys 10:83–95

    Article  Google Scholar 

  22. Merchant S, Purushottam DD, Dean KR, Asthagiri D (2011) . J Chem Phys 135:054505–1–054505–8

    Article  Google Scholar 

  23. Gonzalez JD, Florez E, Romero J, Reyes A, Restrep A (2013) . J Mol Model 19:1763–1777

    Article  CAS  Google Scholar 

  24. Rempe SB, Pratt LR (2001) . Fluid Phase Equilib 183-184:121–132

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) . Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  26. McLean A, Chandler G (1980) . J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley J, Seeger R, Pople J (1980) . J Chem Phys 72:650

    Article  CAS  Google Scholar 

  28. Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) . J Chem Phys 107:5016

    Article  CAS  Google Scholar 

  29. Cossi M, Rega N, Scalmani G, Barone V (2003) . J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 revision a.03. Gaussian, Inc., Wallingford

    Google Scholar 

  31. Boys S, Bernardi F (1970) . Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  32. Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2004) . J Chem Educ 81:596–604

    Article  CAS  Google Scholar 

  33. Truhlar DG, Cramer CJ, Lewis A, Bumpus JA (2007) . J Chem Educ 84:934

    Article  Google Scholar 

  34. Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG (2014) . Phys Chem Chem Phys 16:15068–15106

    Article  CAS  Google Scholar 

  35. Sviatenko LK, Gorb L, Hill FC, Leszczynska D, Leszczynski J (2015) . J Phys Chem A 119:8139–8145

    Article  CAS  Google Scholar 

  36. Mongay C, Cerda V (1974) . Ann Chim 64:409–412

    CAS  Google Scholar 

Download references

Acknowledgments

The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the US Government. The tests described and the resulting data presented herein, unless otherwise noted, were obtained from research conducted under the Environmental Quality Technology Program of the US Army Corps of Engineers and the Environmental Security Technology Certification Program of the Department of Defense by the USAERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harley R. McAlexander or Manoj K. Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 11.2 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAlexander, H.R., Giles, S.A., Crouch, R.A. et al. An integrated quantum chemical and experimental approach for exploring the structures and properties of insensitive munitions interacting with ions in bulk water. Struct Chem 31, 975–982 (2020). https://doi.org/10.1007/s11224-019-01466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01466-y

Keywords

Navigation