Log in

The influence of solvent and ligands on characters of ZnS clusters

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

According to zinc blende and wurtzite structures of ZnS nanocrystals, four clusters (Zn3S3, Zn4S4, (Zn3S3)2, and (Zn3S3)3), were investigated at B3LYP/Lanl2dz theoretical level. In simultaneous consideration of the influence of solvent and ligands, we calculated their Raman and absorption peaks, which are agreement with experimentally reported results. The calculated Raman spectra of Zn3S3, Zn4S4, (Zn3S3)2, and (Zn3S3)3 are in the range of 260–310 cm−1. During the calculation of absorption spectra, time-dependent density-functional theory (TDDFT) is employed. We have found an obvious blue-shift in the calculated wavelengths of the absorption peaks after consideration of the solvent. In solvent environment, the wavelength of absorption peak shifts to red with the increase of the atomic numbers from Zn3S3, to (Zn3S3)2 and (Zn3S3)3 clusters, which is induced by the quantum size effect. Since the sizes of the current calculated clusters are much smaller than the experimentally reported nano-sized ZnS nanocrystals, the calculated wavelengths of absorption peak of the four clusters are shorter than the nano-sized ZnS nanocrystals. Through the analysis of S–Zn–ligand structures, we speculate that the main influence of ligands comes from thiol of ligand because all S–Zn–ligand structures have similar Wiberg Bond Index (WBI) values, absorption spectra, and bond length in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amirav L, Lifshitz E (2008) J Phys Chem C 112:13105

    Article  CAS  Google Scholar 

  2. Chen YQ, Zhang XH, Jia C, Su Y, Li Q (2009) J Phys Chem C 113:2263

    Article  CAS  Google Scholar 

  3. Tiseanu C, Mehra RK, Kho R, Kumke M (2003) J Phys Chem B 107:12153

    Article  CAS  Google Scholar 

  4. Banerjee IA, Yu L, Matsui H (2005) J Am Chem Soc 127:16002

    Article  CAS  Google Scholar 

  5. Gayou VL, Hernandez BS, Zavala G, Santiago P, Ascencio JA (2009) Appl Phys A 94:735

    Article  CAS  Google Scholar 

  6. Prathap P, Revathi N, Subbaiah YPV, Reddy KTR, Miles RW (2009) Solid State Sci 11:224

    Article  CAS  Google Scholar 

  7. Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Phys Rev Lett 88:137401

    Article  Google Scholar 

  8. kirin D, Lukacevic I (2007) Phys Rev B 75:172103

    Article  Google Scholar 

  9. Chattopadhyay M, Kumbhakar P, Tiwary CS, Sarkar R, Mitra AK, Chatterjee U (2009) J Appl Phys 105:024313

    Article  Google Scholar 

  10. Chen YQ, Zhou QT, Zhang XH, Su Y, Jia C, Li Q, Kong WH (2009) Cryst Growth Des 9:728–731

    Article  CAS  Google Scholar 

  11. Wang HF, He Y, Ji TR, Yan XP (2009) Anal Chem 81:1615

    Article  CAS  Google Scholar 

  12. Li L, Bian R, Ding Y, Yu M, Yu D (2009) Mater Chem Phys 113:905

    Article  CAS  Google Scholar 

  13. Matxain JM, Irigoras A, Fowler JE, Ugalde JM (2001) Phys Rev A 64:013201

    Article  Google Scholar 

  14. Matxain JM, Irigoras A, Fowler JE, Ugalde JM (2000) Phys Rev A 63:013201

    Article  Google Scholar 

  15. Matxain JM, Fowler JE, Ugalde JM (2000) Phys Rev A 61:053201

    Article  Google Scholar 

  16. Matxain JM, Irigoras A, Fowler JE, Ugalde JM (2001) Phys Rev A 64:053201

    Article  Google Scholar 

  17. Matxain JM, Eriksson LA, Mercero JM, Ugalde JM, Spano E, Hamad S, Catlow CRA (2006) Nanotechnology 17:4100

    Article  CAS  Google Scholar 

  18. Erbarut E (2003) Solid State Commun 128:113

    Article  CAS  Google Scholar 

  19. Chuchev K, Belbruno JJ (2005) J Phys Chem A 109:1564

    Article  CAS  Google Scholar 

  20. Huang TT, Tan K, Lin MH (2007) J Mol Struct Theochem 821:101

    Article  CAS  Google Scholar 

  21. Zhang X, Zhao M, He T, Li W, Lin X, Wang Z, ** Z, Liu X, **a Y (2008) Solid State Commun 147:165

    Article  CAS  Google Scholar 

  22. Chen H, Shi D, Qi J, Jia J, Wang B (2009) Phys Lett A 373:371

    Article  CAS  Google Scholar 

  23. Hamad S, Cristol S, Catlow CRZ (2005) J Am Chem Soc 127:2580

    Article  CAS  Google Scholar 

  24. Spano E, Hamad S, Catlow CRA (2003) J Phys Chem B 107:10337

    Article  CAS  Google Scholar 

  25. Burnin A, Sanville E, Belbruno JJ (2005) J Phys Chem A 109:5026

    Article  CAS  Google Scholar 

  26. Hamad S, Catlow CRA, Spano E, Matxain JM, Ugalde JM (2005) J Phys Chem B 109:2703

    Article  CAS  Google Scholar 

  27. Hamad S, Catlow CRA (2006) J Cryst Growth 294:2

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Jr, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 60877024, and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110015 and 20090092120022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi** Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Xu, S., Ye, L. et al. The influence of solvent and ligands on characters of ZnS clusters. Struct Chem 21, 1215–1219 (2010). https://doi.org/10.1007/s11224-010-9663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9663-1

Keywords

Navigation