Log in

The Advanced Small Analyzer for Neutrals (ASAN) on the Chang’E-4 Rover Yutu-2

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Advanced Small Analyzer for Neutrals (ASAN) is a compact mass resolving energetic neutral atom analyzer flown on the Yutu-2 rover of the Chinese Chang’E-4 mission to the Moon. ASAN measures energetic neutral atoms in the energy range from 10 eV to 10 keV with typically 30% energy resolution. The field-of-view is a single angular pixel of 37° × 30° pointing at lunar surface. Energetic neutral atoms enter the instrument through a charge particle deflection system and are then ionized on a diamond-like carbon conversion surface. Positive ions from the conversion surface are energy analyzed using an electrostatic analyzer and their velocity is subsequently determined in a time-of-flight section using ceramic channel electron multipliers as detectors. The obtained mass resolution m/\(\Delta\)m is about 2, comfortably separating neutral hydrogen, helium, and the oxygen-group (≥16 amu). A full energy spectrum for energetic neutral atoms is obtained in 3 seconds. Switching the charged particle deflection system off, ASAN also directly measures positive ions with similar performance as for energetic neutral atoms. Including electronics the instrument weighs 970 g and consumes 3.4 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • S. Barabash, R. Lundin, H. Andersson, K. Brinkfeldt, A. Grigoriev, H. Gunell, M. Holmström, M. Yamauchi, K. Asamura, P. Bochsler, P. Wurz, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, S. Orsini, A. Coates, D. Linder, D. Kataria, C. Curtis, K. Hsieh, B. Sandel, R. Frahm, J. Sharber, J. Winningham, M. Grande, E. Kallio, H. Koskinen, P. Riihelä, W. Schmidt, T. Säles, J. Kozyra, N. Krupp, J. Woch, S. Livi, J. Luhmann, S. McKenna-Lawlor, E. Roelof, D. Williams, J.-A. Sauvaud, A. Fedorov, J.-J. Thocaven, The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars express mission. Space Sci. Rev. 126(1–4), 113–164 (2006). https://doi.org/10.1007/s11214-006-9124-8

    Article  ADS  Google Scholar 

  • S. Barabash, J.-A. Sauvaud, H. Gunell, H. Andersson, A. Grigoriev, K. Brinkfeldt, M. Holmström, R. Lundin, M. Yamauchi, K. Asamura, P. Bochsler, W. Baumjohann, T. Zhang, A. Coates, D. Linder, D. Kataria, C. Curtis, H. Hsieh, B. Sandel, A. Fedorov, C. Mazelle, J.-J. Thocaven, M. Grande, H. E. Koskinen, E. Kallio, R. Riihela, J. Kozyra, N. Krupp, J. Woch, J. Luhmann, S. McKenna-Lawlor, S. Orsini, R. Cerulli-Irelli, M. Mura, M. Milillo, M. Maggi, E. Roelof, P. Brandt, C. Russell, K. Szego, J. Winningham, R. Frahm, J. Scherrer, J. Sharber, P. Wurz, P. Bochsler, The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci. 55(12), 1772–1792 (2007). https://doi.org/10.1016/j.pss.2007.01.014

    Article  ADS  Google Scholar 

  • S. Barabash, A. Bhardwaj, M. Wieser, R. Sridharan, T. Kurian, S. Varier, E. Vijayakumar, V. Abhirami, K.V. Raghavendra, S.V. Mohankumar, M.B. Dhanya, S. Thampi, A. Kazushi, H. Andersson, F. Yoshifumi, M. Holmström, R. Lundin, J. Svensson, S. Karlsson, R.D. Piazza, P. Wurz, Investigation of the solar wind–Moon interaction onboard Chandrayaan-1 mission with the SARA experiment. Curr. Sci. 96(4), 526–532 (2009)

    Google Scholar 

  • B.E. Clark, B. Hapke, C. Pieters, D. Britt, Asteroid space weathering and regolith evolution, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 585–599

    Google Scholar 

  • D.H. Crider, R.R. Vondrak, Hydrogen migration to the lunar poles by solar wind bombardment of the Moon. Adv. Space Res. 30(8), 1869–1874 (2002)

    Article  ADS  Google Scholar 

  • G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998)

    Article  ADS  Google Scholar 

  • W.C. Feldman, D.J. Lawrence, R.C. Elphic, B.L. Barraclough, S. Maurice, I. Genetay, A.B. Binder, Polar hydrogen deposits on the Moon. J. Geophys. Res. 105(E2), 4175–4196 (2000)

    Article  ADS  Google Scholar 

  • H.O. Funsten, R.W. Harper, D.J. McComas, Absolute detection efficiency of space-based ion mass spectrometers and neutral atom imagers. Rev. Sci. Instrum. 76(5), 053301 (2005)

    Article  ADS  Google Scholar 

  • S.W. Golomb, Run-length encodings. IEEE Trans. Inf. Theory 12(3), 399 (1966)

    Article  Google Scholar 

  • J.S. Halekas, G.T. Delory, R.P. Lin, T.J. Stubbs, W.M. Farrell, Lunar prospector measurements of secondary electron emission from lunar regolith. Planet. Space Sci. 57(1), 78–82 (2009)

    Article  ADS  Google Scholar 

  • G. Heiken, Petrology of lunar soils. Rev. Geophys. 13(4), 567–587 (1975)

    Article  ADS  Google Scholar 

  • G.H. Heiken, D.S. McKay, R.W. Brown, Lunar deposits of possible pyroclastic origin. Geochim. Cosmochim. Acta 38(11), 1703–1718 (1974)

    Article  ADS  Google Scholar 

  • J.H. Hoffman, R.R. Hodges, Molecular gas species in the lunar atmosphere. Earth Moon Planets 14(1), 159–167 (1975)

    Google Scholar 

  • M. Holmström, M. Wieser, S. Barabash, Y. Futaana, A. Bhardwaj, Dynamics of solar wind protons reflected by the moon. J. Geophys. Res. 115(A6) 06 (2010)

    Article  Google Scholar 

  • Y. Kazama, S. Barabash, M. Wieser, K. Asamura, P. Wurz, Development of an LENA instrument for planetary missions by numerical simulations. Planet. Space Sci. 55(11), 1518–1529 (2007)

    Article  ADS  Google Scholar 

  • C. Lue, Y. Futaana, S. Barabash, M. Wieser, M. Holmström, A. Bhardwaj, M.B. Dhanya, P. Wurz, Strong influence of lunar crustal fields on the solar wind flow. Geophys. Res. Lett. 38(3), 02 (2011)

    Article  Google Scholar 

  • D. J. McComas, F. Allegrini, P. Bochsler, P. Frisch, H. O. Funsten, M. Gruntman, P. H. Janzen, H. Kucharek, D. J. McComas, E. Möbius, D. B. Reisenfeld, N. A. Schwadron, Lunar backscatter and neutralization of the solar wind: First observations of neutral atoms from the Moon. Geophys. Res. Lett. 36, 12 (2009)

    Article  Google Scholar 

  • H. Niehus, W. Heiland, E. Taglauer, Low energy ion scattering at surfaces. Surf. Sci. Rep. 17, 213–303 (1993)

    Article  ADS  Google Scholar 

  • C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tompkins, P. Varanasi, Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326(5952), 568–572 (2009)

    Article  ADS  Google Scholar 

  • R. Rice, P.-S. Yeh, W. Miller, Algorithms for high-speed universal noiseless coding in 9th Computing in Aerospace Conference, (American Institute of Aeronautics and Astronautics, 1993) https://doi.org/10.2514/6.1993-4541

  • Y. Saito, S. Yokota, T. Tanaka, K. Asamura, M.N. Nishino, M. Fujimoto, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, T. Mukai, T. Terasawa, Solar wind proton reflection at the lunar surface: low energy ion measurement by map-pace onboard Selene (Kaguya). Geophys. Res. Lett. 35, 12 (2008)

    Article  Google Scholar 

  • S.A. Stern, The lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37(4), 453–491 (1999). https://doi.org/10.1029/1999RG900005

    Article  ADS  Google Scholar 

  • M. Wieser, S. Barabash, A family for miniature, easily reconfigurable particle sensors for space plasma measurements. J. Geophys. Res. Space Phys. 121(12), 11588–11604 (2016)

    Article  ADS  Google Scholar 

  • M. Wieser, P. Wurz, K. Bruning, W. Heiland, Scattering of atoms and molecules off a magnesium oxide surface. Nucl. Instrum. Methods B 192, 370–380 (2002)

    Article  ADS  Google Scholar 

  • M. Wieser, P. Wurz, P. Bochsler, E. Moebius, J. Quinn, S. Fuselier, A. Ghielmetti, J. DeFazio, T. Stephen, R. Nemanich, NICE: an instrument for direct mass spectrometric measurement of interstellar neutral gas. Meas. Sci. Technol. 16, 1667–1676 (2005)

    Article  ADS  Google Scholar 

  • M. Wieser, S. Barabash, Y. Futaana, M. Holmström, A. Bhardwaj, R. Sridharan, M. Dhanya, P. Wurz, A. Schaufelberger, K. Asamura, Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space. Planet. Space Sci. 57(14–15), 2132–2134 (2009)

    Article  ADS  Google Scholar 

  • M. Wieser, S. Barabash, Y. Futaana, M. Holmström, A. Bhardwaj, R. Sridharan, M.B. Dhanya, A. Schaufelberger, P. Wurz, K. Asamura, First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms. Geophys. Res. Lett. 37(5), 03 (2010)

    Article  Google Scholar 

  • R.F. Willis, M. Anderegg, B. Feuerbacher, B. Fitton, Photoemission and secondary electron emission from lunar surface material, in Photon and Particle Interactions with Surfaces in Space, ed. by R.J.L. Grard (Springer, Dordrecht, 1973), pp. 389–401

    Chapter  Google Scholar 

  • M. Wuest, D.S. Evans, R. von Steiger (eds.). Calibration of Particle Instruments in Space Physics. SR-007 (International Space Science Institute, 2007)

  • M.S. Zbik, R.L. Frost, Y.-F. Song, Y.-M. Chen, High porosity chained aggregates from the topsoil of the lunar regolith dust, in Proceedings of the 9th Australian Space Conference (Australian Academy of Science, 2010), pp. 55–65

    Google Scholar 

Download references

Acknowledgements

The Advanced Small Analyzer for Neutrals (ASAN) instrument was developed by the Swedish Institute of Space Physics (IRF) in Kiruna, Sweden, and the National Space Science Center (NSSC) in Bei**g, China, as a joint project. It is supported by the Swedish National Space Agency (SNSA) under grants 95/11 and 122/18, the National Natural Science Foundation of China (NSFC) under grant 41941001, and the Bei**g Municipal Science and Technology Commission under grant 181100002918003. The data describing the geometric factor of the instrument is freely available at: https://data.irf.se/wieser2020ssr/. Reuse of this data should be credited to the ASAN instrument team at the Swedish Institute of Space Physics (IRF) in Kiruna, Sweden, and the National Space Science Center (NSSC) in Bei**g, China. ASAN science data are provided through the China National Space Administration and the National Astronomical Observatories of China, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wieser.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieser, M., Barabash, S., Wang, XD. et al. The Advanced Small Analyzer for Neutrals (ASAN) on the Chang’E-4 Rover Yutu-2. Space Sci Rev 216, 73 (2020). https://doi.org/10.1007/s11214-020-00691-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00691-w

Keywords

Navigation