Log in

Geomagnetic Core Field Secular Variation Models

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We analyse models describing time changes of the Earth’s core magnetic field (secular variation) covering the historical period (several centuries) and the more recent satellite era (previous decade), and we illustrate how both the information contained in the data and the a priori information (regularisation) affect the result of the ill-posed geomagnetic inverse problem. We show how data quality, frequency and selection procedures govern part of the temporal changes in the secular variation norms and spectra, which are sometimes difficult to dissociate from true changes of the core state. We highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result in artificial changes in the model norms and spectra. Model users should keep in mind that such features can be mis-interpreted as the signature of physical mechanisms (e.g. diffusion). Finally, we present perspectives concerning core field modelling: imposing dynamical constraints (e.g. by means of data assimilation) reduces the non-uniqueness of the geomagnetic inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.E. Backus, Kinematics of geomagnetic secular variation in a perfectly conducting core. Philos. Trans. R. Soc. Lond. A 263, 239–266 (1968)

    Article  ADS  Google Scholar 

  • G.E. Backus, Non-uniqueness of the external geomagnetic field determined by surface intensity measurements. J. Geophys. Res. 75, 6337–6341 (1970)

    Article  Google Scholar 

  • G.E. Backus, Bayesian inference in geomagnetism. Geophys. J. 92, 125–142 (1988)

    Article  MATH  ADS  Google Scholar 

  • C.D. Beggan, K.A. Whaler, S. Macmillan, Biased residuals of core flow models from satellite-derived “virtual observatories”. Geophys. J. Int. 177(2), 463–475 (2009)

    Article  ADS  Google Scholar 

  • J. Bloxham, Simultaneous stochastic inversion for geomagnetic main field and secular variations I: a large scale inverse problem. J. Geophys. Res. 92, 11597–11608 (1987)

    Article  ADS  Google Scholar 

  • J. Bloxham, D. Gubbins, Geomagnetic field analysis—IV. Testing the frozen-flux hypothesis. Geophys. J. R. Astron. Soc. 84, 139–152 (1986)

    ADS  Google Scholar 

  • J. Bloxham, A. Jackson, Simultaneous stochastic inversion for geomagnetic main field and secular variation II: 1820–1980. J. Geophys. Res. 94, 15753–15769 (1989)

    Article  ADS  Google Scholar 

  • J. Bloxham, A. Jackson, Time-dependent map** of the magnetic field at the core–mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992)

    Article  ADS  Google Scholar 

  • J. Bloxham, D. Gubbins, A. Jackson, Geomagnetic secular variation. Philos. Trans. R. Soc. Lond. A 329, 415–502 (1989)

    Article  ADS  Google Scholar 

  • J.C. Cain, W.E. Daniels, S.J. Hendricks, D.C. Jensen, An evaluation of the main geomagnetic field, 1940–1962. J. Geophys. Res. 70, 3647–3674 (1965)

    Article  ADS  Google Scholar 

  • J.C. Cain, R.A. Langel, S.J. Hendricks, First magnetic field results from the ogo-2 satellite, Technical report, Goddard Space Flight Center NASA (1966)

  • J.C. Cain, S.J. Hendricks, R.A. Langel, W.V. Hudson, A proposed model for the International Geomagnetic Reference Field—1965. J. Geomag. Geoelectr. 19, 335–355 (1967)

    Google Scholar 

  • E. Canet, A. Fournier, D. Jault, Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res. 114, B11101 (2009). doi:10.1029/2008JB006189

    Article  ADS  Google Scholar 

  • A. Chulliat, K. Telali, World monthly means database project. Publ. Inst. Geophys. Pol. Acad. Sci. C 99(398), 537–552 (2007)

    Google Scholar 

  • C.G. Constable, R.L. Parker, P.N. Stark, Geomagnetic field models incorporating frozen-flux constraints. Geophys. J. Int. 113, 419–433 (1993)

    Article  ADS  Google Scholar 

  • C. De Boor, A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27 (Springer, Berlin, 2001)

    MATH  Google Scholar 

  • C.C. Finlay, Hydromagnetic waves in Earth’s core and their influence on geomagnetic secular variations, PhD thesis, University of Leeds, UK, 2005

  • C.C. Finlay, Historical variations of the geomagnetic axial dipole. Phys. Earth Planet. Int. 70 (2008)

  • C.C. Finlay, A. Jackson, Equatorially dominated magnetic field change at the surface of Earth’s core. Science 300, 2084–2086 (2003)

    Article  ADS  Google Scholar 

  • A. Fournier, C. Eymin, T. Alboussière, A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear and sparsely observed MHD system. Nonlinear Process. Geophys. 14, 1–18 (2007)

    Article  Google Scholar 

  • N. Gillet, A. Jackson, C.C. Finlay, Maximum entropy regularisation of time-dependent geomagnetic field models. Geophys. J. Int. 171, 1005–1016 (2007)

    Article  ADS  Google Scholar 

  • N. Gillet, M.A. Pais, D. Jault, Ensemble inversion of time-dependent core flow models. Geochem. Geophys. Geosyst. 10, Q06004 (2009). doi:10.1029/2008GC002290

    Article  Google Scholar 

  • D. Gubbins, Can the Earth’s magnetic field be sustained by core oscillation? Geophys. Res. Lett. 2, 409–412 (1975)

    Article  ADS  Google Scholar 

  • D. Gubbins, Dynamics of the secular variation. Phys. Earth Planet. Int. 68, 170–182 (1991)

    Article  ADS  Google Scholar 

  • D. Gubbins, A formalism for the inversion of geomagnetic data for core motions with diffusion. Phys. Earth Planet. Inter. 98, 193–206 (1996)

    Article  ADS  Google Scholar 

  • D. Gubbins, Geomagnetic constraint on stratification at the top of the core. Earth Planets Space 59, 661–664 (2007)

    ADS  Google Scholar 

  • D. Gubbins, N. Roberts, Use of the frozen flux approximation in the interpretation of archeomagnetic and paleomagnetic data. Geophys. J. R. Astron. Soc. 73, 675–687 (1983)

    Google Scholar 

  • D. Gubbins, A.L. Jones, C. Finlay, Fall in earth’s magnetic field is erratic. Science 312, 900–903 (2006)

    Article  ADS  Google Scholar 

  • R. Holme, Modelling of attitude error in vector magnetic data: application to ørsted data. Earth Planets Space 52, 1187–1197 (2000)

    ADS  Google Scholar 

  • R. Holme, N. Olsen, Core surface flow modeling from high-resolution secular variation. Geophys. J. Int. 166, 518–528 (2006)

    Article  ADS  Google Scholar 

  • G. Hulot, N. Olsen, T.J. Sabaka, The present field, in Treatise in Geophysics, Geomagnetism, vol. 5, ed. by M. Kono, G. Schubert (2007), pp. 33–75

  • A. Jackson, Kelvin’s theorem applied to the Earth’s core. Philos. Trans. R. Soc. Lond. A 452, 2195–2201 (1996)

    MATH  ADS  Google Scholar 

  • A. Jackson, Intense equatorial flux spots on the surface of the Earth’s core. Nature 424, 760–763 (2003)

    Article  ADS  Google Scholar 

  • A. Jackson, C.C. Finlay, Geomagnetic secular variation and applications to the core, in Treatise in Geophysics, Geomagnetism, vol. 5, ed. by M. Kono, G. Schubert (2007), pp. 147–193

  • A. Jackson, A.R.T. Jonkers, M.R. Walker, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957–990 (2000)

    Article  ADS  Google Scholar 

  • A. Jackson, C.G. Constable, M.R. Walker, R.L. Parker, Models of Earth’s main magnetic field incorporating flux and radial vorticity constraints. Geophys. J. Int. 171, 133–144 (2007a)

    Article  ADS  Google Scholar 

  • A. Jackson, C.G. Constable, N. Gillet, Maximum entropy regularisation of the geomagnetic core field inverse problem. Geophys. J. Int. 171, 995–1004 (2007b)

    Article  ADS  Google Scholar 

  • A.R.T. Jonkers, A. Jackson, A. Murray, Four centuries of geomagnetic data from historical records. Rev. Geophys. 41 (2003). doi:10.1029/2002RG000115

  • E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  • M. Korte, C.G. Constable, Continuous geomagnetic models for the past 7 millennia II: CALS7K. Geochem. Geophys. Geosyst. 6, 2–16 (2005). doi:10.1029/2004GC000801

    Google Scholar 

  • M. Korte, F. Donadini, C.G. Constable, The geomagnetic field for 0–3 ka, Part II: a new series of time-varying global models. Geochem. Geophys. Geosyst. 10, 06008 (2009). doi:10.1029/2008GC002297

    Article  Google Scholar 

  • W. Kuang, A. Tangborn, W. Jiang, D. Liu, Z. Sun, J. Bloxham, Z. Wei, MoSST–DAS: the first generation geomagnetic data assimilation framework. Commun. Comput. Phys. 3, 85–108 (2008)

    MATH  Google Scholar 

  • R.A. Langel, The main field, in Geomagnetism, vol. I, ed. by J.A. Jacobs (Academic Press, London, 1987), pp. 249–512

    Google Scholar 

  • R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, G.D. Mead, Some new methods in geomagnetic field modeling applied to the 1960–1980 epoch. J. Geomag. Geoelectr. 34, 327–349 (1982)

    ADS  Google Scholar 

  • V. Lesur, I. Wardinski, The second version of the GFZ reference internal magnetic field model: GRIMM-2, in IAGA meeting, Sopron, Hungary (2009)

  • V. Lesur, S. Macmillan, A. Thomson, The BGS magnetic field candidate models for the 10th generation IGRF. Earth Planets Space 57, 1157–1163 (2005)

    ADS  Google Scholar 

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173, 382–394 (2008)

    Article  ADS  Google Scholar 

  • V. Lesur, I. Wardinski, S. Asari, B. Minchev, M. Mandea, Modelling the Earth’s core magnetic field under flow constraints. Earth Planets Space (2009, submitted)

  • D. Liu, A. Tangborn, W. Kuang, Observing system simulation experiments in geomagnetic data assimilation. J. Geophys. Res. 112, 08103 (2007). doi:10.1029/2006JB004691

    Article  Google Scholar 

  • M. Mandea, N. Olsen, A new approach to directly determine the secular variation from magnetic satellite observations. Geophys. Res. Lett. 33, 15306 (2006). doi:10.1029/2006GL026616

    Article  ADS  Google Scholar 

  • S. Maus, CHAMP magnetic mission, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Heidelberg, 2007)

    Google Scholar 

  • S. Maus, S. Macmillan, F. Lowes, T. Bondar, Evaluation of candidate geomagnetic field models for the 10th generation of IGRF. Earth Planets Space 57, 1173–1181 (2005)

    ADS  Google Scholar 

  • S. Maus, S. McLean, D. Dater, H. Lühr, M. Rother, W. Mai, S. Choi, NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field. Earth Planets Space 57, 1151–1156 (2005)

    ADS  Google Scholar 

  • S. Maus, M. Rother, C. Stolle, W. Mai, S. Choi, H. Luhr, D. Cooke, C. Roth, Third generation of the Potsdam magnetic model of the Earth (pomme). Geochem. Geophys. Geosyst. 7 (2006). doi:10.1029/2006GC001269

  • S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, J. Rauberg, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from champ satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2007). doi:10.10292008001949

    Article  Google Scholar 

  • S. McLean, S. Macmillan, S. Maus, V. Lesur, A. Thomson, D. Dater, The US/UK World Magnetic Model for 2005–2010, Technical report, NOAA (2004). NESDIS/NGDC-1

  • M.S. O’Brien, C.G. Constable, R.L. Parker, Frozen flux modeling for epochs 1915 and 1980. Geophys. J. Int. 128, 434–450 (1997)

    Article  ADS  Google Scholar 

  • N. Olsen, A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data. Geophys. J. Int. 149, 454–462 (2002)

    Article  ADS  Google Scholar 

  • N. Olsen, Ørsted, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Heidelberg, 2007)

    Google Scholar 

  • N. Olsen, M. Mandea, Investigation of a secular variation impulse using satellite data: the 2003 geomagnetic jerk. Earth Planet. Sci. Lett. 255, 94–105 (2007)

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nature Geosci. 1, 390–394 (2008)

    Article  ADS  Google Scholar 

  • N. Olsen, T. Sabaka, F. Lowes, New parameterisation of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005)

    ADS  Google Scholar 

  • N. Olsen, H. Luhr, T.J. Sabaka, M. Mandea, CHAOS—a model of Earth’s magnetic field derived from CHAMP, Oersted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, T.J. Sabaka, L. Tøffner-Clausen, CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179, 1477–1487 (2009)

    Article  ADS  Google Scholar 

  • P.H. Roberts, Yu. Russel, On the 60-year signal from the core. Geophys. Astrophys. Fluid Dyn. 101(1), 11–35 (2007)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, R.T. Baldwin, Modelling the Sq magnetic field from POGO and Magsat satellite and contemporaneous hourly observatory data (HSTX/G&G-9302, Hughes STX Corp., 7701 Greenbelt Road, Greenbelt, MD, 1993)

  • T.J. Sabaka, N. Olsen, R.A. Langel, A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophys. J. Int. 151, 32–68 (2002)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, M.E. Purucker, Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004)

    Article  ADS  Google Scholar 

  • Z. Sun, A. Tangborn, W. Kuang, Data assimilation in a sparsely observed one-dimensional modeled MHD system. Nonlinear Process. Geophys. 14, 181–192 (2007)

    Article  ADS  Google Scholar 

  • A.W. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modeling. Geophys. J. Int. 169, 951–963 (2007)

    Article  ADS  Google Scholar 

  • A.W. Thomson, B. Hamilton, S. Macmillan, S. Reay, A global magnetic field model derived from weighted satellite data. Geophys. J. Int. (2009, under review)

  • G.M. Turner, J.L. Rasson, C.V. Reeves, Observation and measurement techniques, in Treatise in Geophysics, Geomagnetism, vol. 5, ed. by M. Kono, G. Schubert (2007), pp. 93–146

  • R. Waddington, D. Gubbins, N. Barber, Geomagnetic field analysis—V. Determining steady core surface flows directly from geomagnetic observations. Geophys. J. Int. 122, 326–350 (1995)

    Article  ADS  Google Scholar 

  • I. Wardinski, R. Holme, A time-dependent model of the Earth’s magnetic field and its secular variation for the period 1980–2000. J. Geophys. Res. 111 (2006). doi:10.1029/2006JB004401

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, N., Lesur, V. & Olsen, N. Geomagnetic Core Field Secular Variation Models. Space Sci Rev 155, 129–145 (2010). https://doi.org/10.1007/s11214-009-9586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9586-6

Navigation