Log in

Deformation and Fracture of ZrO2 (Y2O3) Porous Ceramics During Axial Compression Measured by Digital Image Correlation

  • Published:
Russian Physics Journal Aims and scope

The paper focuses on deformation of ZrO2−5.5 wt.% Y2O3 ceramics with porosity of 30 to 50% induced by axial compression measured by the digital image correlation techniques. A comparative analysis is given to time dependences of the averaged localized strain accumulation along compressive and tensile stress axes calculated by digital image correlation in different areas of the fracture surface. It is found that strain and fracture of porous zirconia-based ceramics develop in stages. Time dependences of the averaged localized strain accumulation correlate with the strain hardening exponent obtained from stress-strain curves. Macroscopic strain localization is identified for zirconia. Spatiotemporal distribution of instantaneous localized strain along the loading axis measured for the specimen surface by digital image correlation, correlates with the porous ceramics fracture at a macro-level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sadowski and L. Marsavina, Comput. Mater. Sci., 50, No. 4, 1336−1346 2011. https://doi.org/10.1016/j.commatsci.2010.04.011.

    Article  Google Scholar 

  2. P. Leplay, J. Réthoré, S. Meille, M.-Ch. Baietto, J. Eur. Ceram. Soc., 30, No. 13, 2715−2725 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.05.021.

    Article  Google Scholar 

  3. S. Meille, M. Lombardi, J. Chevalier, and L. Montanaro, J. Eur. Ceram. Soc., 32, 3959–3967 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.006.

    Article  Google Scholar 

  4. T. Ohji and M. Fukushima, Int. Mater. Rev., 57, 115–131 (2012). https://doi.org/10.1179/1743280411Y.0000000006.

    Article  Google Scholar 

  5. N. L. Savchenko, T. Yu. Sablina, I. N. Sevostyanova, S. P. Buуakova, and S. N. Kulkov, Russ. Phys. J., 58, No. 11, 1544–1548 (2016).

    Article  Google Scholar 

  6. G. Mayer, J. Mech. Behav. Biomed. Mater., 76, 21−29 (2017). https://doi.org/10.1016/j.jmbbm.2017.06.019.

    Article  Google Scholar 

  7. S. N. Kulkov, I. Yu. Smolin, V. A. Mikushina, T. Y. Sablina, I. N. Sevostyanova, and V. V. Gorbatenko, Russ. Phys. J., 63, No. 6, 976–983 (2020).

    Article  Google Scholar 

  8. M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, University of South Carolina, Columbia (2009).

  9. P. S. Lyubutin, S. V. Panin, V. V. Titkov, et al., Mech. Bull., 1, 87−107 (2019). https://doi.org/10.15593/perm.mech/2019.1.08.

    Article  Google Scholar 

  10. M. A. Sutton, Appl. Mech. Rev., 65, No. 5, 0508021 (2013). https://doi.org/10.1115/1.4024984.

    Article  Google Scholar 

  11. F. Hild and S. Roux, Strain, 42, No. 2, 69−80 (2006). https://doi.org/10.1111/j.1475-1305.2006.00258.

    Article  Google Scholar 

  12. B. Pan, K. M. Qian, H. M. **e, and A. Asundi, Meas. Sci. Technol., 20, 062001 (2009). https://doi.org/10.1088/0957-0233/20/6/062001.

  13. M. A. Sutton, W. J. Wolters, W. H. Peters, et al., IVCJ, 1, No. 3, 133−139 (1983).

    Article  Google Scholar 

  14. T. C. Chu, W. F. Ranson, and M. A. Sutton, Exp. Mech., 25, No. 3, 232−244 (1985).

    Article  Google Scholar 

  15. L. B. Zuev, Autowave Plasticity. Localization and Collective Modes [in Russian], Fizmatlit, Moscow (2018).

  16. T. Wada, A. Inoue, and A. L. Greer, Appl. Phys. Lett., 86, 251907 (2005). https://doi.org/10.1063/1.1953884.

  17. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley and Sons Ltd, London (1977).

  18. V. I. Trefilov, V. F. Moiseev, and E. P. Pechkovskii, Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova dumka, Kiev (1989).

  19. O. K. Lepakova, V. I. Itin, E. G. Astafurova, et al., Fizich. Mezomekh., 19, No. 2, 108–113 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sevostyanova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 48–54, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevostyanova, I.N., Sablina, T.Y. & Gorbatenko, V.V. Deformation and Fracture of ZrO2 (Y2O3) Porous Ceramics During Axial Compression Measured by Digital Image Correlation. Russ Phys J 65, 1116–1122 (2022). https://doi.org/10.1007/s11182-022-02739-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02739-6

Keywords

Navigation