Log in

A Detection Method for the Random Noise Failure of Mems Gyros on Orbit

  • Published:
Russian Physics Journal Aims and scope

The extended Kalman filter and parity vector method are combined to optimize the gyros fault diagnosis model, compensate the constant drift, and increase the time window to improve the fault decision function. The improved model retains the ability to detect the abnormal drift faults and it can effectively detect the abnormal noise faults to isolate the fault type for the application of MEMS on orbit. The algorithm model of real satellite attitude control system is used to make the simulation verification. The results show that the system can effectively detect and isolate the fault type in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. W. Wang, Infrared Laser Eng., 45, No. 3, 1–6 (2016).

    Google Scholar 

  2. H. R. Petersen, R. Holm, H. E. Mathisen, et al., 33th Annual AIAA/USU Conference on Small Satellites, SSC19–VII–01 (2019).

  3. Y. **ng and C. L. Wei, J. Astronautics, 24, No. 4, 410–417 (2003).

    Google Scholar 

  4. S. Qian, P. K. Li, and S. F. Zhang, J. Astronautics, 30, No. 2, 585–590 (2009).

    Google Scholar 

  5. L. L. Li, R. Niu, and Z. J. Shao, J. Astronautics, 40, No. 7, 776–784 (2019).

    Google Scholar 

  6. Y. N. Wang, Z. J. Ren, and J. Yan, J. Spacecraft TT & C, No.1, 83–86 (2015).

  7. S. Yoon, S. Kim, J. Bae, et al., Control Eng Pract., 19. No. 2, 158–173 (2011).

    Article  Google Scholar 

  8. C. B. Li and Z. L. Zhang, Aerospace Control., 34, No. 2, 86–90 (2016).

    Google Scholar 

  9. B. H. Du, Z. Y. Shi, J. L. Song, et al., Micromachines, 10, No. 5, 278 (2019).

    Article  Google Scholar 

  10. K. Kaladhar, E. Komuraiah, and K. M. Reddy, Appl. Math. Nonlinear Sci., 4, No. 2, 475–488 (2019).

    Article  MathSciNet  Google Scholar 

  11. P. Zhou and Q. Fan, J. Zhu, Appl. Math. Nonlinear Sci., 5, No. 1, 25–34 (2020).

    Article  Google Scholar 

  12. T. Zhang, F. F. Wang, and W. X. Fu, Appl. Sci., 8, No. 6, 865 (2018).

    Article  Google Scholar 

  13. C. Xu, S. Y. Zhao, and F. Liu, Neurocomputing, 349, 156–163 (2019).

    Article  Google Scholar 

  14. J. Z. Lu, C. X. Zhang, and T. Y. Yan, J. Astronautics, 30, No. 3, 982–987 (2009).

    Google Scholar 

  15. D. Hu and Y. F. Dong, Chin. J. Space Sci., 31, No. 2, 229–235 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **a Mu.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 66–78, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Li, S., Wang, Z. et al. A Detection Method for the Random Noise Failure of Mems Gyros on Orbit. Russ Phys J 64, 1857–1871 (2022). https://doi.org/10.1007/s11182-022-02526-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02526-3

Keywords

Navigation