Log in

Chemical aspects of the degradation of lithium-ion batteries based on layered oxide LiNi0.6Mn0.2Co0.2O2 and graphite

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The change in the composition of the electrolyte after life cycle testing (cycling) of lithium-ion batteries (LIBs) was studied. The cell with a nominal capacity of 22 A h was composed of a cathode based on nickel-rich layered lithium oxide LiNi0.6Mn0.2Co0.2O2 (NMC622) and an anode based on graphite. NMR and high-resolution mass spectrometry demonstrated the continuous decomposition of dimethyl carbonate and ethyl methyl carbonate, related to the disruption of the formation of protective surface layers on the graphite electrode. The degradation of the LIB is related to the formation of polyethylene oxide oligomers of various compositions as a result of the decomposition of the electrolyte components and the precipitation of the salt MeOCO2Li, which is poorly soluble in carbonate solvents, on the separator. A water content of more than 20 ppm in the electrolyte leads to the hydrolysis of the salt LiPF6 with the formation of HPO2F2 and HF. The presence of HF facilitates the dissolution of the components of the surface film at the graphite/electrolyte interface with the regeneration of H2O and the formation of a “fresh” surface on the graphite, which participates in the electrochemical decomposition of the carbonate solvents. Organophosphate C2H5O4P is formed upon the interaction of the electrolyte components with HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. M. Salgado, F. Danzi, J. E. Oliveira, A. El-Azab, P. P. Camanho, M. H. Braga, Molecules, 2021, 26, 3188; DOI: https://doi.org/10.3390/MOLECULES26113188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Ding, Z. P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev., 2019, 2, 1; DOI: https://doi.org/10.1007/S41918-018-0022-Z.

    Article  CAS  Google Scholar 

  3. M. S. E. Houache, C. H. Yim, Z. Karkar, Y. Abu-Lebdeh, Batteries, 2022, 8, No. 7, 70, DOI: https://doi.org/10.3390/BATTERIES8070070.

    Article  CAS  Google Scholar 

  4. A. A. Savina, A. O. Boev, E. D. Orlova, A. V. Morozov, A. M. Abakumov, Russ. Chem. Rev., 2023, 92, RCR5086; DOI: https://doi.org/10.59761/RCR5086.

    Article  Google Scholar 

  5. G. E. Blomgren, J. Electrochem. Soc., 2016, 164, A5019; DOI: https://doi.org/10.1149/2.0251701jes.

    Article  Google Scholar 

  6. T. Li, X. Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock, Electrochem. Energy Rev., 2019, 3, 43; DOI: https://doi.org/10.1007/S41918-019-00053-3.

    Article  Google Scholar 

  7. P. Yan, J. Zheng, J. Liu, B. Wang, X. Cheng, Y. Zhang, X. Sun, C. Wang, J.-G. Zhang, Nat. Energy, 2018, 3, 600; DOI: https://doi.org/10.1038/s41560-018-0191-3.

    Article  CAS  Google Scholar 

  8. S. Schweidler, L. De Biasi, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, J. Phys. Chem. C, 2018, 122, 8829; DOI: https://doi.org/10.1021/acs.jpcc.8b01873.

    Article  CAS  Google Scholar 

  9. N. Lin, Z. Jia, Z. Wang, H. Zhao, G. Ai, X. Song, Y. Bai, V. Battaglia, C. Sun, J. Qiao, K. Wu, G. Liu, J. Power Sources, 2017, 365, 235; DOI: https://doi.org/10.1016/J.JPOWSOUR.2017.08.045.

    Article  CAS  Google Scholar 

  10. K. Takahashi, V. Srinivasan, J. Electrochem. Soc. A, 2015, 162, 635; DOI: https://doi.org/10.1149/2.0281504jes.

    Article  Google Scholar 

  11. Y. Leng, S. Ge, D. Marple, X.-G. Yang, C. Bauer, P. Lamp, C.-Y. Wang, J. Electrochem. Soc. A, 2017, 164, 1037; DOI: https://doi.org/10.1149/2.0451706jes.

    Article  Google Scholar 

  12. W. Huang, Y. Ye, H. Chen, R. A. Vila, A. **ang, H. Wang, F. Liu, Z. Yu, J. Xu, Z. Zhang, R. Xu, Y. Wu, L.-Y. Chou, H. Wang, J. Xu, D. T. Boyle, Y. Li, Y. Cui, Nat. Commun., 2022, 13, 1; DOI: https://doi.org/10.1038/s41467-022-33486-4.

    Google Scholar 

  13. Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu, X. Han, ACS Appl. Mater. Interfaces, 2019, 11, 46839; DOI: https://doi.org/10.1021/acsami.9b16589.

    Article  CAS  PubMed  Google Scholar 

  14. L. V. Sheina, E. V. Karaseva, N. V. Shakirova, V. S. Kolosnitsyn, Russ Chem Bull., 2023, 72, 2377; DOI: https://doi.org/10.1007/s11172-023-4036-2.

    Article  CAS  Google Scholar 

  15. G. R. Baymuratova, K. G. Khatmullina, G. Z. Tulibaeva, I. K. Yakushchenko, P. A. Troshin, O. V. Yarmolenko, Russ. Chem. Bull., 2022, 71, 2108; DOI: https://doi.org/10.1007/s11172-022-3634-8.

    Article  Google Scholar 

  16. H. R. Morin, D. G. Graczyk, Y. Tsai, S. Lopykinski, H. Iddir, J. C. Garcia, N. D. Rago, S. Trask, L. Flores, S.-B. Son, Z. Zhang, N. M. Johnson, I. Bloom, ACS Appl. Energy Mater., 2020, 3, 2565; DOI: https://doi.org/10.1021/acsaem.9b02277.

    Article  CAS  Google Scholar 

  17. M. Tang, J. Newman, J. Electrochem. Soc. A, 2012, 159, 1922; DOI: https://doi.org/10.1149/2.028212jes.

    Article  Google Scholar 

  18. D. Strmcnik, I. E. Castelli, J. G. Connell, D. Haering, M. Zorko, P. Martins, P. P. Lopes, B. Genorio, T. Østergaard, H. A. Gasteiger, F. Maglia, B. K. Antonopoulos, V. R. Stamenkovic, J. Rossmeisl, N. M. Markovic, Nat. Catal., 2018, 1, 255; DOI: https://doi.org/10.1038/s41929-018-0047-z.

    Article  Google Scholar 

  19. M. Martins, D. Haering, J. G. Connell, H. Wan, K. L. Svane, B. Genorio, P. F. B. D. Martins, P. P. Lopes, B. Gould, F. Maglia, R. Jung, V. Stamenkovic, I. E. Castelli, N. M. Markovic, J. Rossmeisl, D. Strmcnik, ACS Catal., 2023, 13, 9289; DOI: https://doi.org/10.1021/acscatal.3c01531.

    Article  CAS  Google Scholar 

  20. M. Keppeler, H. Y. Tran, W. Braunwarth, Energy Technol., 2021, 9, 2100132; DOI: https://doi.org/10.1002/ente.202100132.

    Article  CAS  Google Scholar 

  21. A. Kampker, H. Heimes, C. Offermanns, S. Wennemar, T. Robben, N. Lackner, World Electr. Veh. J., 2023, 14, 96; DOI: https://doi.org/10.3390/WEVJ14040096.

    Article  Google Scholar 

  22. D. L. Wood, J. Li, S. J. An, Joule, 2019, 3, 2884; DOI: https://doi.org/10.1016/J.JOULE.2019.11.002.

    Article  Google Scholar 

  23. T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, Nat. Nanotechnol., 2018, 14, 50; DOI: https://doi.org/10.1038/s41565-018-0284-y.

    Article  PubMed  Google Scholar 

  24. X. Liu, L. Yin, D. Ren, L. Wang, Y. Ren, W. Xu, S. Lapidus, H. Wang, X. He, Z. Chen, G.-L. Xu, M. Ouyang, K. Amine, Nat. Commun., 2021, 12, 1; DOI: https://doi.org/10.1038/s41467-021-24404-1.

    Article  Google Scholar 

  25. L. Wang, A. Menakath, F. Han, Y. Wang, P. Y. Zavalij, K. J. Gaskell, O. Borodin, D. Iuga, S. P. Brown, C. Wang, K. Xu, B. W. Eichhorn, Nat. Chem., 2019, 11, 789; DOI: https://doi.org/10.1038/s41557-019-0304-z.

    Article  CAS  PubMed  Google Scholar 

  26. Q. Cai, H. Jia, G. Li, Z. **e, X. Zhou, Z. Ma, L. **ng, W. Li, J. Energy Chem., 2023, 81, 593; DOI: https://doi.org/10.1016/J.JECHEM.2023.02.044.

    Article  CAS  Google Scholar 

  27. D. Xu, Y. Kang, J. Wang, S. Hu, Q. Shi, Z. Lu, D. He, Y. Zhao, Y. Qian, H. Lou, Y. Deng, J. Power Sources, 2019, 437, 226929; DOI: https://doi.org/10.1016/J.JPOWSOUR.2019.226929.

    Article  CAS  Google Scholar 

  28. Y. Wu, X. Liu, L. Wang, X. Feng, D. Ren, Y. Li, X. Rui, Y. Wang, X. Han, G.-L. Xu, H. Wang, L. Lu, X. He, K. Amine, M. Ouyang, Energy Storage Mater., 2021, 37, 77; DOI: https://doi.org/10.1016/J.ENSM.2021.02.001.

    Article  Google Scholar 

  29. E. Peled, S. Menkin, J. Electrochem. Soc. A, 2017, 164, 1703; DOI: https://doi.org/10.1149/2.1441707jes.

    Article  Google Scholar 

  30. N. Takenaka, Y. Suzuki, H. Sakai, M. Nagaoka, J. Phys. Chem., C, 2014, 118, 10874; DOI: https://doi.org/10.1021/jp5018696.

    Article  CAS  Google Scholar 

  31. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. WoodIII, Carbon, 2016, 105, 52; DOI: https://doi.org/10.1016/J.CARBON.2016.04.008.

    Article  CAS  Google Scholar 

  32. S. E. Renfrew, B. D. McCloskey, J. Electrochem. Soc. A, 2019, 166, 2762; DOI: https://doi.org/10.1149/2.1561912jes.

    Article  Google Scholar 

  33. H. Gao, Q. Yan, J. Holoubek, Y. Yin, W. Bao, H. Liu, A. Baskin, M. Li, G. Cai, W. Li, D. Tran, P. Liu, J. Luo, Y. S. Meng, Z. Chen, Adv. Energy Mater., 2023, 13, 2202906; DOI: https://doi.org/10.1002/AENM.202202906.

    Article  CAS  Google Scholar 

  34. V. Kraft, W. Weber, M. Grützke, M. Winter, S. Nowak, RSC Adv., 2015, 5, 80150; DOI: https://doi.org/10.1039/C5RA16679A.

    Article  CAS  Google Scholar 

  35. P. Barnes, K. Smith, R. Parrish, C. Jones, P. Skinner, E. Storch, Q. White, C. Deng, D. Karsann, M. L. Lau, J. J. Dumais, E. J. Dufek, H. **ong, J. Power Sources, 2020, 447, 227363; DOI: https://doi.org/10.1016/J.JPOWSOUR.2019.227363.

    Article  CAS  Google Scholar 

  36. C. Xu, G. Hernández, S. Abbrent, L. Kobera, R. Konefal, J. Brus, K. Edström, D. Brandell, J. Mindemark, ACS Appl. Energy Mater., 2019, 2, 4925; DOI: https://doi.org/10.1021/acsaem.9b00607.

    Article  CAS  Google Scholar 

  37. R. Jung, M. Metzger, F. Maglia, C. Stinner, H. A. Gasteiger, J. Electrochem. Soc. A, 2017, 164, 1361; DOI: https://doi.org/10.1149/2.0021707jes.

    Article  Google Scholar 

  38. V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift fur Krist., 2014, 229, 345; DOI: https://doi.org/10.1515/ZKRI-2014-1737.

    Google Scholar 

  39. C.-H. Shen, S.-Y Shen, F. Fu, C.-G. Shi, H.-Y. Zhang, M. J. Pierre, H. Su, Q. Wang, B.-B. Xu, L. Huang, J.-T. Lib, S.-G. Sun, J. Mater. Chem., A, 2015, 3, 12220; DOI: https://doi.org/10.1039/C5TA01849H.

    Article  CAS  Google Scholar 

  40. A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, H. A. Gasteiger, Electrochim. Acta, 2020, 346, 136271; DOI: https://doi.org/10.1016/j.electacta.2020.136271.

    Article  CAS  Google Scholar 

  41. T. L. Kulova, A. M. Skundin, Electrochem. Energetics, 2021, 21, 117; DOI: https://doi.org/10.18500/1608-4039-2021-21-3-117-131.

    Article  Google Scholar 

  42. R. Petibon, J. **a, J. C. Burns, J. R. Dahn, J. Electrochem. Soc. A, 2014, 161, 1618; DOI: https://doi.org/10.1149/2.0351410jes.

    Article  Google Scholar 

  43. J. Chen, L. **ng, X. Yang, X. Liu, T. Li, W. Li, Electrochim. Acta, 2018, 290, 568; DOI: https://doi.org/10.1016/J.ELECTACTA.2018.09.077.

    Article  CAS  Google Scholar 

  44. W. Zhao, F. Ren, Q. Yan, H. Liu, Y. Yang, Chin. Chem. Lett., 2020, 31, 3209–3212; DOI: https://doi.org/10.1016/J.CCLET.2020.05.006.

    Article  CAS  Google Scholar 

  45. W. Song, Z. Qin, B. Duan, B. Hong, Y. Liu, S. Hong, Int. J. Electrochem. Sci., 2019, 14, 9069; DOI: https://doi.org/10.20964/2019.09.55.

    Article  CAS  Google Scholar 

  46. Q. Q. Liu, L. Ma, C. Y. Du, J. R. Dahn, Electrochim. Acta, 2018, 263, 237; DOI: https://doi.org/10.1016/J.ELECTACTA.2018.01.058.

    Article  CAS  Google Scholar 

  47. S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc. A, 2004, 151, 1202; DOI: https://doi.org/10.1149/1.1760992/XML.

    Article  Google Scholar 

  48. G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon, S. Laruelle, J. Power Sources, 2008, 178, 409; DOI: https://doi.org/10.1016/J.JPOWSOUR.2007.11.110.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to LLC Transport Budushchego and especially R. A. Kovalevskii for their support and assistance in conducting this research.

Funding

This work was financially supported by the Russian Science Foundation (Project No. 23-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Katorova.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

On the occasion of the 90th anniversary of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences.

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 5, pp. 1136–1148, May, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katorova, N.S., Galushko, A.S., Burykina, J.V. et al. Chemical aspects of the degradation of lithium-ion batteries based on layered oxide LiNi0.6Mn0.2Co0.2O2 and graphite. Russ Chem Bull 73, 1136–1148 (2024). https://doi.org/10.1007/s11172-024-4228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4228-4

Key words

Navigation