Log in

Synthesis of fluorinated halonitrobenzenes and halonitrophenols using tetrafluoroethylene and buta-1,3-dienes as starting building blocks

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The gas-phase copyrolysis of tetrafluoroethylene with buta-1,3-diene in a flow reactor at 495–505 °C produces 3,3,4,4-tetrafluorocyclohex-1-ene, which selectively converted to 1,2-difluorobenzene or 1-chloro-2,3-difluorobenzene. The latter can be converted to 2-chloro-3,4-difluoronitrobenzene, 2,3,4-trifluoronitrobenzene, 2,3-difluoro-6-nitrophenol, or 2-chloro-3-fluoro-4-nitrophenol via nitration, fluorodechlorination, and hydrolysis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organo fluorine Compounds in Medical Chemistry and Biomedical Application, Eds R. Filler, Y. Kobayashi, L. M. Yagupolskii, Elsevier, Amsterdam, 1993, 386 pp.; DOI: https://doi.org/10.1016/0020-711x(94)90040-x.

    Google Scholar 

  2. J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev., 2014, 114, 2432; DOI: https://doi.org/10.1021/cr4002879.

    Article  CAS  PubMed  Google Scholar 

  3. E. P. Gillis, K. J. Eastman, M. D. Donnelly, N. A. Meanwell, J. Med. Chem., 2015, 58, 8315; DOI: https://doi.org/10.1021/acs.jmedchem.5b00258.

    Article  CAS  PubMed  Google Scholar 

  4. P. Kirsch, M. Bremer, Angew. Chem., Int. Ed., 2000, 39, 4216; DOI: https://doi.org/10.1002/152-3773(2001201)39:23<4216::AID-ANIE4216>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  5. R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Chem. Soc. Rev., 2011, 40, 3496; DOI: https://doi.org/10.1039/c0cs00221f.

    Article  CAS  PubMed  Google Scholar 

  6. E. V. Nosova, O. A. Batanova, N. N. Mochulskaya, V. N. Charushin, Chem. Heterocycl. Compd., 2019, 55, 578.

    Article  CAS  Google Scholar 

  7. D. L. Obydennov, E. V. Chernyshova, V. Ya. Sosnovskikh, Chem. Heterocycl. Compd., 2020, 56, 1241.

    Article  Google Scholar 

  8. Fluorine Compounds. Synthesis and Application, Ed. N. Isikawa, Kodanshe, Tokyo, 1986.

    Google Scholar 

  9. P. Kirsch, Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Application, Wiley—VCH, 2004, 308 pp.; DOI: https://doi.org/10.1002/352760393x.

  10. V. Prakash Reddy, Organo fluorine Chemistry: Synthesis and Applications, Elsevier, Amsterdam, 2020, 356 pp.

    Google Scholar 

  11. V. T. Andriole, The Quinolones, 1998, Academic Press, New York, 1998, 441 pp.

    Google Scholar 

  12. D. Hooper, E. Rubinstein, Quinolone Antibacterial Agents, 2003, ASM Press, Washington, DC, 2003, 485 pp.

    Book  Google Scholar 

  13. K. L. Kirk, J. Fluorine Chem., 2006, 127, 1013–1029; DOI: https://doi.org/10.1016/j.jfluchem.2006.06.007.

    Article  CAS  Google Scholar 

  14. D. T. W. Chu, P. Fernandes, Recent Development in the Field of Quinolones Antibacterial Agents, In: Advance in Drug Research, 1991, 21, 39–144.

  15. V. N. Charushin, E. V. Nosova, G. N. Lipunova, O. N. Chupakhin, Fluoroquinolones: Synthesis and Application, in Fluorine in Heterocyclic Chemistry, Springer, 2014, Vol. 2, 111–179; DOI: https://doi.org/10.1007/978-3-319-04435-4_2.

  16. V. N. Charushin, E. V. Nosova, G. N. Lipunova, O. N. Chupakhin, Ftorkhinolony: sintez i primenenie [Fluoro quinolones: Synthesis and Application], FIZMATLIT, Moscow, 2013, 320 pp. (in Russian).

    Google Scholar 

  17. A. D. Da Silva, M. V. De Almeida, M. V. N. De Souza, M. R. C. Couri, Curr. Med. Chem., 2003, 10, 21; DOI: https://doi.org/10.2174/0929867033368637.

    Article  CAS  PubMed  Google Scholar 

  18. I. Hayakawa, Y. Hiramatsu, Y. Tanaka, Chem. Pharm. Bull., 1984, 32, 4907–4913.

    Article  CAS  Google Scholar 

  19. S. Atarashi, S. Yokohama, K. Yamamzaki, K. Sakano, M. Imamura, I. Hayakawa, Chem. Pharm. Bull., 1987, 35, 1896.

    Article  CAS  Google Scholar 

  20. T. Une, T. Fujimoto, K. Sato, Y. Osada, Antimicrob. Agent. Chemother., 1988, 32, 559; DOI: https://doi.org/10.1128/AAC.32.9.1336.

    Article  Google Scholar 

  21. M. Lopez-Iglesis, E. Busto, V. Gotor, V. Gotor-Fernandez, J. Org. Chem., 2015, 80, 3815; DOI: https://doi.org/10.1021/acs.joc.5b00056.

    Article  Google Scholar 

  22. N. Sunduru, L. Gupta, K. Chauhan, N. N. Mishra, P. K. Shukla, P. M. S. Chauhan, Eur. J. Med. Chem., 2011, 46, 1232; DOI: https://doi.org/10.1016/ejmech.2011.01.044.

    Article  CAS  PubMed  Google Scholar 

  23. S. Leyva, E. Leyva, Tetrahedron, 2007, 63, 2093; DOI: https://doi.org/10.1016/j.tet.2006.11.079.

    Article  CAS  Google Scholar 

  24. V. Venepally, R. B. N. Prasad, Y. Poornachandra, C. G. Kumar, R. C. Keddy Jala, Biorganic & Medical Chem. Lett., 2016, 26, 613; DOI: https://doi.org/10.1016/jbmcl.2015.11.063.

    Article  CAS  Google Scholar 

  25. U. Jordis, F. Sauter, M. Burkart, H.-G. Henning, A. Gelbin, J. Prak. Chem., 1991, 333, 267; DOI: https://doi.org/10.1002/prac.19913330211.

    Article  CAS  Google Scholar 

  26. O. N. Chupakhin, V. N. Charushin, G. A. Mokrushina, S. K. Kotovskaya, I. V. Kaplenko, I. V. Karpin, G. M. Petrova, E. O. Sidorov, O. M. Nefedov, N. V. Volchkov, M. B. Lipkind, V. S. Shaidurov, V. F. Zabolotskikh, A. I. Shipilov, G. A. Tolstikov, V. A. Gruzdev, S. M. Navashin, I. P. Fomina, USSR Inventor’s Certificate, No. 1766921, 1993.

  27. K. Hiroshi, I. Akira, M. Satashi, S. Seigo, I. Isutoma, J. Med. Chem., 1980, 23, 1358.

    Article  Google Scholar 

  28. Aromatic Fluorination, Eds J. H. Clark, D. W. Wails, T. W. Bastock, 1997, CRC Press, 208 pp.

  29. P. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev., 2015, 115, 9073; DOI: https://doi.org/10.1021/jm00186a014.

    Article  CAS  PubMed  Google Scholar 

  30. M. G. Campbell, T. Ritter, Chem. Rev., 2015, 115, 612; DOI: https://doi.org/10.1021/cr500366b.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Sasson, S. Negussie, M. Royz, N. Mushkin, Chem. Comm., 1996, 297; DOI: https://doi.org/10.1039/CC9960000297.

  32. M. Sawaguchi, T. Fukuhara, N. Yoneda, J. Fluorine Chem., 1999, 97, 127; DOI: https://doi.org/10.1016/S0022-1139(99)00039-1.

    Article  CAS  Google Scholar 

  33. N. Yoneda, T. Fukahara, T. Kikuchi, A. Suzuki, Synthetic Comm., 1989, 19, 865; DOI: https://doi.org/10.1080/00397918908051005.

    Article  CAS  Google Scholar 

  34. Y. Yoshida, Y. Kimura, M. Tomoi, Tetrahedron Lett., 1989, 30, 7199; DOI: https://doi.org/10.1016/S0040-4039(01)93933-4.

    Article  CAS  Google Scholar 

  35. M.-A. Lacour, M. Zablocka, C. Duhayon, J.-P. Majoral, M. Taillefer, Adv. Synthesis and Catalysis, 2008, 350, 2677; DOI: https://doi.org/10.1002/adsc.200800428.

    Article  CAS  Google Scholar 

  36. O. M. Nefedov, N. V. Volchkov, in Chemistry of Carbenes and Small-Sized Cyclic Compounds, Ed. O. M. Nefedov, Mir, Moscow, 1989, 69.

  37. O. M. Nefedov, N. V. Volchkov, Mendeleev Communications, 2006, 121; DOI: https://doi.org/10.1070/MC2006v016n03ABEH002362.

  38. N. V. Volchkov, M. B. Lipkind, O. M. Nefedov, Russ. Chem. Bull., 2020, 69, 68; DOI: https://doi.org/10.1007/s11172-020-2724-8.

    Article  CAS  Google Scholar 

  39. N. V. Volchkov, M. B. Lipkind, O. M. Nefedov, M. P. Egorov, Russ. Chem. Bull., 2021, 70, 925; DOI: https://doi.org/10.1007/s11172-021-3168-5.

    Article  CAS  Google Scholar 

  40. F. J. Weigert, R. F. Davis, J. Fluorine Chem., 1993, 63, 69; DOI: https://doi.org/10.1016/S0022-1139(00)80399-1.

    Article  CAS  Google Scholar 

  41. F. J. Weigert, R. F. Davis, J. Fluorine Chem., 1993, 63, 59; DOI: https://doi.org/10.1016/S0022-1139(00)80398-x.

    Article  Google Scholar 

  42. R. V. Larkovich, S. A. Ponomarev, A. S. Aldoshin, A. A. Tabolin, S. L. Ioffe, V. G. Nenajdenko, Eur. J. Org. Chem., 2020, 2479; DOI: https://doi.org/10.1002/ejoc.202000054.

  43. N. V. Volchkov, M. B. Lipkind, O. M. Nefedov, Russ. Chem. Bull., 2019, 68, 1232; DOI: https://doi.org/10.1007/s11172-019-2546-8.

    Article  CAS  Google Scholar 

  44. N. V. Volchkov, M. B. Lipkind, O. M. Nefedov, Russ. Chem. Bull., 2020, 69, 270; DOI: https://doi.org/10.1007/s11172-020-2756-0.

    Article  CAS  Google Scholar 

  45. N. V. Volchkov, A. V. Zabolotskikh, A. V. Ignatenko, O. M. Nefedov, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1990, 39, 1458; DOI: https://doi.org/10.1007/BF00957859.

    Article  Google Scholar 

  46. N. V. Volchkov, A. V. Zabolotskikh, M. B. Lipkind, O. M. Nefedov, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1989, 38, 1782; DOI: https://doi.org/10.1007/BF00956983.

    Article  Google Scholar 

  47. A. I. Shipilov, V. F. Zabolotskikh, O. M. Nefedov, N. V. Volchkov, O. N. Chupakhin, V. N. Charushin, A. S. Kochanov, A. V. Tiunov, E. V. Abramenko, USSR Inventor’s Certificate, No. 1792936, 1993, Byul. Izobret., 1993, No. 5, 53.

  48. V. Pandarus, R. Ciriminna, F. Beband, M. Pagliaro, Adv. Synth. Catal., 2011, 353, 1306; DOI: https://doi.org/10.1002/adsc.201000945.

    Article  CAS  Google Scholar 

  49. R. V. Jadadeesh, A. E. Surkus, H. Junge, M.-N. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Shunemann, A. Bruckner, M. Beller, Science, 2013, 342, 1073; DOI: https://doi.org/10.1126/science.1242005.

    Article  Google Scholar 

  50. R. D. Chambers, J. Hutchinson, M. E. Sparrowhawk, G. Sandford, J. S. Moilliet, J. Thomson, J. Fluorine Chem., 2000, 102, 169; DOI: https://doi.org/10.1016/S0022-1139(99)00238-9.

    Article  CAS  Google Scholar 

  51. J. S. Parker, J. F. Bower, P. M. Murray, B. Patel, P. Talavera, Org. Process. Research & Development, 2008, 12, No. 6, 1060; DOI: https://doi.org/10.1021/op8000355.

    Article  CAS  Google Scholar 

  52. R. Bolton, J. R. P. Sandall, J. Chem. Soc., Perkin Trans. II, 1978, 141; DOI: https://doi.org/10.1039/p29780000141.

  53. S. R. Chaudhari, N. Suryaprakash, RSC Adv., 2014, 4, 15018; DOI: https://doi.org/10.1039/c4ra01436g.

    Article  CAS  Google Scholar 

  54. T. S. Mahesh, K. Dorai, A. Kumar, J. Magnetic Res., 2001, 148, 95; DOI: https://doi.org/10.1006/jmre.2000.2225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Volchkov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2156–2163, November, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkov, N.V., Lipkind, M.B. & Nefedov, O.M. Synthesis of fluorinated halonitrobenzenes and halonitrophenols using tetrafluoroethylene and buta-1,3-dienes as starting building blocks. Russ Chem Bull 70, 2156–2163 (2021). https://doi.org/10.1007/s11172-021-3327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3327-8

Key words

Navigation