Log in

Preparations of derivatives constructed from bi-metallic CuCo-based metal–organic frameworks (MOFs) for advanced hydrogen and oxygen evolution reactions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, CuCo@C and CuCoS@C derived from an in-situ synthesis bi-metallic MOF HKUST-1/ZIF-67 (CuCo-MOF) were successfully fabricated by calcination and hydrothermal sulfide strategies. Morphology characterization results indicated that ZIF-67 grew uniformly on the surface of HKUST-1 to form CuCo-MOF. And, benefiting from bi-metallic MOFs precursors, the formed derivatives inherited and possessed good textural properties and dispersing well metal sites, which facilitated diffusions of molecules and enhancements of catalytic performances. In addition, carbon matrix produced in the materials further accelerated electron transporting properties, boosting HER and OER activities. Accordingly, in electrolytic water evaluations, CuCo@C and CuCoS@C showed good HER and OER performance, achieving 97 mV and 180 mV of overpotential at 10 mA cm−2 in an alkaline medium, respectively. Additionally, the catalysts exhibit long-term stabilities. Thus, this study provides a rational way for designing and constructing of high-efficient catalysts for H2 and O2 generations from electrolytic water processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. A. Bereketova, M. Nallal, M. Yusuf, S. Jang, K. Selvam, K.H. Park, RSC Adv. 11, 27 (2021)

    Article  Google Scholar 

  2. X. Yao, Z. Hu, L. Wang, Res. Chem. Intermed. 11, 4745 (2021)

    Article  Google Scholar 

  3. Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 10417 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. Z.Z. Tian, L. Yang, Z.L. Wang, C.H. Xu, D.M. Li, Res. Chem. Intermed. 11, 4779 (2021)

    Article  Google Scholar 

  5. H.F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 49, 1414 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. H.B. Wu, B.Y. **a, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  7. Q. Huo, X.R. Qi, J.S. Li, G.Q. Liu, Y. Ning, X.B. Zhang, B.Y. Zhang, Y.F. Fu, S.Y. Liu, Appl. Catal. B Environ. 255, 117751 (2019)

    Article  CAS  Google Scholar 

  8. Q. Huo, J.S. Li, X.R. Qi, G.Q. Liu, X.B. Zhang, B.Y. Zhang, Y. Ning, Y.F. Fu, J.M. Liu, S.Y. Liu, Chem. Eng. J. 378, 122106 (2019)

    Article  CAS  Google Scholar 

  9. A. Aijaz, J. Masa, C. Rosler, W. **a, P. Weide, A.J. Botz, R.A. Fischer, W. Schuhmann, M. Muhler, Angew. Chem. Int. Ed. 12, 4087 (2016)

    Article  Google Scholar 

  10. X.F. Li, M.Y. Lu, H.Y. Yu, T.H. Zhang, J. Liu, J.H. Tian, R. Yang, ChemElectroChem 6, 4507 (2019)

    Article  CAS  Google Scholar 

  11. J. Du, F. Li, L. Sun, Chem. Soc. Rev. 4, 2663 (2021)

    Article  Google Scholar 

  12. L. Wang, Y.Z. Han, X. Feng, J.W. Zhou, P.F. Qi, B. Wang, Coord. Chem. Rev. 307, 361 (2016)

    Article  CAS  Google Scholar 

  13. Y.J. Zhang, L.M. Qi, Nanoscale 14, 34 (2022)

    Google Scholar 

  14. H.S. Jadhav, H.A. Bandal, S. Ramakrishna, H. Kim, Adv. Mater. 34, 11 (2021)

    Google Scholar 

  15. J. Shao, Z.M. Wan, H.M. Liu, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng, J. Mater. Chem. A. 31, 12194 (2014)

    Article  Google Scholar 

  16. J. Tang, Y. Yamauchi, Nat. Chem. 7, 638 (2016)

    Article  Google Scholar 

  17. R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Acc. Chem. Res. 12, 2796 (2016)

    Article  Google Scholar 

  18. R.R. Salunkhe, J. Tang, N. Kobayashi, J. Kim, Y. Ide, S. Tominaka, J.H. Kim, Y. Yamauchi, Chem. Sci. 9, 5704 (2016)

    Article  Google Scholar 

  19. M.M. Rajpure, H.A. Bandal, H.S. Jadhav, H. Kim, J. Electroanal. Chem. 923, 116825 (2022)

    Article  CAS  Google Scholar 

  20. G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, Adv. Mater. 29, 1606814 (2017)

    Article  Google Scholar 

  21. Y.M. Chen, Z. Li, X.W. Lou, Angew. Chem. Int. Ed. 36, 10521 (2015)

    Article  Google Scholar 

  22. H.S. Jadhav, A. Roy, G.M. Throat, W.J. Chung, J.G. Seo, J. Ind. Eng. Chem. 71, 452 (2019)

    Article  CAS  Google Scholar 

  23. P.S. Adarakatti, M. Mahanthappa, J.P. Hughes, S.J. Rowley-Neale, G.C. Smith, S. Ashoka, C.E. Banks, Int. J. Hydrogen Energy 31, 16069 (2019)

    Article  Google Scholar 

  24. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Nat. Mater. 5, 909 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew. Chem. Int. Ed. 57, 7568 (2018)

    Article  CAS  Google Scholar 

  26. R. Tong, M. Xu, H.M. Huang, C.K. Zhang, Y.A. Ma, X.N. Wang, X.S. Hu, Y.J. Qu, S.P. Wang, H. Pan, A.C.S. Appl, Energy Mater. 5, 440 (2022)

    CAS  Google Scholar 

  27. L. Liao, S.N. Wang, J.J. **ao, X.J. Bian, Y.H. Zhang, M.D. Scanlon, X.L. Hu, Y. Tang, B.H. Liu, H.H. Girault, Energy Environ. Sci. 7, 387 (2014)

    Article  CAS  Google Scholar 

  28. S.L. Zhu, Y.Y. Zhou, Y.Q. Liang, Z.Y. Li, S.L. Wu, Z.D. Cui, S.Y. Luo, A.C.S. Appl, Energy Mater. 4, 7579 (2021)

    CAS  Google Scholar 

  29. N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein, X. Fan, Chem. Eng. J. 281, 669 (2015)

    Article  CAS  Google Scholar 

  30. Q. Huo, J.S. Li, G.Q. Liu, X.R. Qi, X.B. Zhang, Y. Ning, B.Y. Zhang, Y.F. Fu, S.Y. Liu, Chem. Eng. J. 362, 287 (2019)

    Article  CAS  Google Scholar 

  31. C. Hu, Y.X. Bai, M. Hou, Y.S. Wang, L.C. Wang, X. Cao, C.W. Chan, H. Sun, W.B. Li, J. Ge, Sci. Adv. 6, 5 (2020)

    Google Scholar 

  32. X.Z. Li, C.Y. Ni, C. Yao, Z.G. Chen, Appl. Catal. B Environ. 117–118, 118 (2012)

    Article  Google Scholar 

  33. H.R. Pouretedal, M. Kiyani, J. Iran. Chem. Soc. 11, 271 (2013)

    Article  Google Scholar 

  34. Z.Q. Hou, J.P. Long, C.Z. Shu, R.X. Liang, J.B. Li, X. Liao, J. Alloys Compd. 798, 560 (2019)

    Article  CAS  Google Scholar 

  35. G. Nagaraju, G.S. Raju, Y.H. Ko, J.S. Yu, Nanoscale 8, 812 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. J. Liu, C. Wu, D.D. **ao, P. Kopold, L. Gu, P.A. van Aken, J. Maier, Y. Yu, Small 12, 2354 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. H. Zhu, J.F. Zhang, R. Yanzhang, M.L. Du, Q.F. Wang, G.H. Gao, J.D. Wu, G.M. Wu, M. Zhang, B. Liu, J.M. Yao, X.W. Zhang, Adv. Mater. 27, 4752 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. L.L. Qiao, A.Q. Zhu, H. Yang, W.X. Zeng, R. Dong, P.F. Tan, D.L. Zhong, Q.Y. Ma, J. Pan, Inorg. Chem. Front. 5, 2276 (2018)

    Article  CAS  Google Scholar 

  39. S.F. Li, M.X. Li, Y.H. Ni, Appl. Catal. B Environ. 268, 118392 (2020)

    Article  CAS  Google Scholar 

  40. R.X. Zhang, Z.C. Hu, S.Q. Cheng, W.T. Ke, T.Y. Ning, J.B. Wu, X.Q. Fu, G.X. Zhu, Inorg. Chem. 60, 6721 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. B.W. Zhang, C.J. Li, G. Yang, K. Huang, J.S. Wu, Z. Li, X. Cao, D.D. Peng, S.J. Hao, Y.Z. Huang, A.C.S. Appl, Mater. Inter. 10, 23807 (2018)

    Article  CAS  Google Scholar 

  42. Y.C. Ge, J.J. Wu, X.W. Xu, M.X. Ye, J.F. Shen, Int. J. Hydrog. Energy 41, 19847 (2016)

    Article  CAS  Google Scholar 

  43. H.J. Xu, J. Cao, C.F. Shan, B.K. Wang, P.X. **, W.S. Liu, Y. Tang, Angew. Chem. Int. Ed. 57, 8654 (2018)

    Article  CAS  Google Scholar 

  44. A. Jawad, J. Lang, Z.W. Liao, A. Khan, J. Ifthikar, Z. Lv, S.J. Long, Z.L. Chen, Z.Q. Chen, Chem. Eng. J. 335, 548 (2018)

    Article  CAS  Google Scholar 

  45. L. Li, X.L. Liu, H.Y. Geng, B. Hu, G.W. Song, Z.S. Xu, J. Mater. Chem. A. 1, 10292 (2013)

    Article  CAS  Google Scholar 

  46. S. Vadivel, B. Paul, A. Habibi-Yangjeh, D. Maruthamani, M. Kumaravel, T. Maiyalagan, J. Phys. Chem. Solids 123, 242 (2018)

    Article  CAS  Google Scholar 

  47. C.H. Tan, Y.L. Zhu, R. Lu, P.C. Xue, C.Y. Bao, X.L. Liu, Z.P. Fei, Y.Y. Zhao, Mater. Chem. Phys. 91, 44 (2005)

    Article  CAS  Google Scholar 

  48. H.D. Xu, D. Wang, J. Ma, T. Zhang, X.H. Lu, Z.Q. Chen, Appl. Catal. B Environ. 238, 557 (2018)

    Article  CAS  Google Scholar 

  49. Y.M. Gong, J.C. Zhao, H.X. Wang, J.L. Xu, Electrochim. Acta 292, 895 (2018)

    Article  CAS  Google Scholar 

  50. J.C. Li, C. Zhang, T. Zhang, Z. Shen, Q.W. Zhou, J. Pu, H.J. Ma, T.H. Wang, H.G. Zhang, H.M. Fan, Y.Y. Wang, H.X. Ma, Chem. Eng. J. 397, 125457 (2020)

    Article  CAS  Google Scholar 

  51. K.Q. Dai, N. Zhang, L.L. Zhang, L.X. Yin, Y.F. Zhao, B. Zhang, Chem. Eng. J. 414, 128804 (2021)

    Article  CAS  Google Scholar 

  52. S. Anantharaj, H. Sugime, S. Noda, Chem. Eng. J. 408, 127275 (2021)

    Article  CAS  Google Scholar 

  53. S.N. Li, P.L. Ma, J.S. Yang, S. Krishnan, K.S. Kesavan, R.M. **ng, S.H. Liu, Catalysts 13, 5 (2023)

    Google Scholar 

  54. Z.Y. Lin, T. Feng, X. Ma, G. Liu, Fuel 339, 127395 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hebei Natural Science Foundation (B2020203025, B2019203384) and the National Natural Science Foundation of China (21606193).

Funding

Quan Huo and Suyan Liu received support from Hebei Natural Science Foundation (B2020203025, B2019203384) and the National Natural Science Foundation of China (21606193), respectively.

Author information

Authors and Affiliations

Authors

Contributions

QH and XZ wrote the main manuscript text. YF, JZ and LF prepared all figures. JM, HS and JG determined the structures and properties of all sample. SL proposed experimental ideas, reviewed and edited the manuscript, provided experimental resources and supervised the experimental process. All authors reviewed the manuscript.

Corresponding author

Correspondence to Suyan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1934 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Q., Zhang, X., Fu, Y. et al. Preparations of derivatives constructed from bi-metallic CuCo-based metal–organic frameworks (MOFs) for advanced hydrogen and oxygen evolution reactions. Res Chem Intermed 50, 107–125 (2024). https://doi.org/10.1007/s11164-023-05189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05189-y

Keywords

Navigation