Log in

Efficient degradation and adsorption of roxarsone by FeOOH quantum decorated resorcinol–formaldehyde resins via Fenton-like process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Roxarsone (ROX), a feed additive widely used worldwide, was degraded into toxic products in the natural environment. Advanced oxidation processes (AOP) based on nonradicals used for the degradation of ROX had not been reported. Herein, resorcinol–formaldehyde resins (RFs) produced by a simple high-temperature hydrothermal method had efficient photocatalytic properties to produce H2O2. FeOOH quantum dots (QDs) act as the activator and electron shuttle to decompose H2O2 to produce 1O2. RFs decorated with FeOOH quantum dots (RFs-FeQDs) were successfully synthesized and completely remove ROX with a rate of 0.03649 min−1 under simulated sunlight. Otherwise, the 99.42% arsenic-containing portion that shed from Roxarsone was eventually converted to As(V) and in-situ adsorbed by FeOOH quantum dots. The experiment data showed that ·OH, O2·− and 1O2 participated in the degradation and 1O2 was the dominant reactive species. Moreover, the systems have excellent reusability and stability over a wide pH range. This study provided a new strategy for photocatalytic production of 1O2 to remove the ROX from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. **e, Y. Hu, H. Cheng, Water Res. 89, 59 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. J. Meng, F. Xu, S. Yuan, Y. Mu, W. Wang, Z.-H. Hu, Chem. Eng. J. 355, 130 (2019)

    Article  CAS  Google Scholar 

  3. D.J. Fisher, L.T. Yonkos, K.W. Staver, Environ. Sci. Technol. 49, 1999 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. P. Basu, J.F. Stolz, E. Perera, Environ. Sci. Technol. 41, 818 (2007)

    Article  PubMed  Google Scholar 

  5. M. Czaplicka, Ł Bratek, K. Jaworek, J. Bonarski, S. Pawlak, Chem. Eng. J. 243, 364 (2014)

    Article  CAS  Google Scholar 

  6. A.A. Tabatabaiee Bafrooee, E. Moniri, H. Ahmad Panahi, M. Miralinaghi, A.H. Hasani, Res. Chem. Intermed. 47, 1397 (2021)

  7. X. Wang, Y. Chen, T. Li, J. Liang, L. Zhou, Chem. Eng. J. 405, 126952 (2021)

    Article  CAS  Google Scholar 

  8. K. Chen, K. Yan, Q. **e, H. Zhu, X. Li, Z. Dong, G. Yuan, J. Zhang, Y. Cong, Res. Chem. Intermed. 48, 4443 (2022)

    Article  CAS  Google Scholar 

  9. Y. Ma, J. Chen, Y. Wang, Y. Zhao, G. Zhang, T. Sun, Res. Chem. Intermed. 47, 997 (2020)

    Article  Google Scholar 

  10. A. Naghizadeh, T. Etemadinia, E. Derakhshani, M. Esmati, Res. Chem. Intermed. 49, 1165 (2023)

  11. J. Zang, C. Chen, Y. Yang, X. Chen, Res. Chem. Intermed. 48, 4145 (2022)

    Article  CAS  Google Scholar 

  12. Y. Shiraishi, T. Hagi, M. Matsumoto, S. Tanaka, S. Ichikawa, T. Hirai, Commun. Chem. 3, 169 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 18, 985 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. N. Chen, Y. Wan, G. Zhan, X. Wang, M. Li, L. Zhang, Chem. Eng. J. 384, 123254 (2020)

    Article  CAS  Google Scholar 

  15. Y. Huang, X. Li, C. Zhang, M. Dai, Z. Zhang, Y. **, B. Quan, S. Lu, Y. Liu, Chem. Eng. J. 424, 128537 (2021)

    Article  CAS  Google Scholar 

  16. S. Wu, D. Yang, Y. Zhou, H. Zhou, S. Ai, Y. Yang, Z. Wan, L. Luo, L. Tang, D.C.W. Tsang, J. Hazard. Mater. 399, 123032 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. S. Su, C. Cao, Y. Zhao, D.D. Dionysiou, Appl. Catal. B 245, 207 (2019)

    Article  CAS  Google Scholar 

  18. A.A.Q. Ali, Z.N. Siddiqui, Res. Chem. Intermed. 49(3), 1085 (2022)

    Article  Google Scholar 

  19. Q. Tao, J. Bi, X. Huang, R. Wei, T. Wang, Y. Zhou, H. Hao, Chemosphere 263, 127889 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. T. Sun, Z. Shi, X. Zhang, X. Wang, L. Zhu, Q. Lin, J. Alloy. Compd. 808, 151689 (2019)

    Article  CAS  Google Scholar 

  21. X. Qian, Y. Wu, M. Kan, M. Fang, D. Yue, J. Zeng, Y. Zhao, Appl. Catal. B 237, 513 (2018)

    Article  CAS  Google Scholar 

  22. B. Jiang, Y. Liu, J. Zheng, M. Tan, Z. Wang, M. Wu, Environ. Sci. Technol. 49, 12363 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. M.N. Pervez, Y. Wei, P. Sun, G. Qu, V. Naddeo, Y. Zhao, Sci. Total Environ. 781, 146726 (2021)

    Article  CAS  Google Scholar 

  24. P. Hong, Z. Wu, D. Yang, K. Zhang, J. He, Y. Li, C. **e, W. Yang, Y. Yang, L. Kong, J. Liu, Chem. Eng. J. 421, 129594 (2021)

    Article  CAS  Google Scholar 

  25. T. Li, L. Ge, X. Peng, W. Wang, W. Zhang, Water Res. 190, 116777 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. S. Tang, Z. Wang, D. Yuan, C. Zhang, Y. Rao, Z. Wang, K. Yin, J. Clean. Prod. 268, 122253 (2020)

    Article  CAS  Google Scholar 

  27. X. Chen, W. Fu, Z. Yang, Y. Yang, Y. Li, H. Huang, X. Zhang, B. Pan, Water Res 230, 119562 (2023)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Yang, J. Wang, Langmuir 39, 4179–4189 (2023)

  29. B. Sheng, C. Deng, Y. Li, S. **e, Z. Wang, H. Sheng, J. Zhao, ACS Catal. 12, 14679 (2022)

    Article  CAS  Google Scholar 

  30. L. Zhou, J. Feng, B. Qiu, Y. Zhou, J. Lei, M. **ng, L. Wang, Y. Zhou, Y. Liu, J. Zhang, Appl. Catal. B Environ. 267, 118396 (2020)

    Article  CAS  Google Scholar 

  31. Q. Zhang, Y. Peng, Y. Lin, S. Wu, X. Yu, C. Yang, Chem. Eng. J. 405, 126661 (2021)

    Article  CAS  Google Scholar 

  32. Y. Li, L. Liu, W. Li, Y. Lan, C. Chen, Chem. Eng. J. 432, 134413 (2022)

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (22006038, 22076046), and Fundamental Research Funds for the Central Universities (JKB01221619).

Author information

Authors and Affiliations

Authors

Contributions

WS and LZ wrote the main manuscript text. YL and JL helped perform the analysis with constructive discussions. JZ contributed significantly to analysis and manuscript preparation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Liang Zhou or Juying Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Data availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11004 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhou, L., Liu, Y. et al. Efficient degradation and adsorption of roxarsone by FeOOH quantum decorated resorcinol–formaldehyde resins via Fenton-like process. Res Chem Intermed 49, 2569–2582 (2023). https://doi.org/10.1007/s11164-023-05012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05012-8

Keywords

Navigation