Log in

SERS performance of cubic-shaped gold nanoparticles for environmental monitoring

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A subtle change in the geometry of nanoparticles affects the local electromagnetic field distribution and intensity of the analytes under optical excitation, which leads to distinguished enhancement effects on Raman signals. We report covalently modified gold–aryl nanocubes (AuNCs) for surface-enhanced Raman scattering (SERS). We performed transmission electron microscopy studies to investigate the morphology of AuNCs and UV–visible and Raman spectroscopy studies to understand their optical properties. Dynamic light scattering measurements, ζ-potential analyses, and contact angle measurements were performed to understand particle size distribution, surface charge, and wettability of the substrate. We obtained a high SERS enhancement (108) for AuNCs using 10−6 M rhodamine 6G (R6G, organic dye pollutant) as an analyte. AuNCs interact with the incoming electromagnetic wave, and due to the presence of multiple sharp corners (“hot spots”), there is a large enhancement of the electromagnetic field allowing the detection of 10−11 M R6G. The relative standard deviations were obtained within 5.8% for 10−6 M R6G, indicating excellent uniformity. Moreover, a wide linear range of 10−3–10−6 M was obtained for the detection of 4-nitrophenol (4-NPh, a high-priority toxic pollutant). These results indicate that highly SERS-active AuNCs could be successfully used for monitoring environmental contamination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, T. Pradeep, Nano Rev. 2, 5883 (2011)

    Google Scholar 

  2. N. Li, P. Zhao, D. Astruc, Angew. Chem. Int. Ed. 53, 1756 (2014)

    CAS  Google Scholar 

  3. J.E. Ortiz-Castillo, R.C. Gallo-Villanueva, M.J. Madou, V.H. Perez-Gonzalez, Coord. Chem. Rev. 425, 213489 (2020)

    CAS  Google Scholar 

  4. J. Reguera, J. Langer, D.J. de Aberasturi, L.M. Liz-Marzán, In Colloidal Synth. Plasmon. Nanometals, ed. By L. Liz-Marzán (Jenny Stanford Publishing, New York, 713, (2020)

  5. A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Chem. Sci. 11, 4563 (2020)

    PubMed  PubMed Central  Google Scholar 

  6. C. Li, S. Xu, J. Yu, Z. Li, W. Li, J. Wang, A. Liu, B. Man, S. Yang, C. Zhang, Nano Energy 81, 105585 (2021)

    CAS  Google Scholar 

  7. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    CAS  Google Scholar 

  8. H.L. Wu, H.R. Tsai, Y.T. Hung, K.U. Lao, C.W. Liao, P.J. Chung, J.S. Huang, I.C. Chen, M.H. Huang, Inorg. Chem. 50, 8106 (2011)

    CAS  PubMed  Google Scholar 

  9. M.N. O’Brien, M.R. Jones, K.A. Brown, C.A. Mirkin, J. Am. Chem. Soc. 136, 7603 (2014)

    PubMed  Google Scholar 

  10. N.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B 105, 4065 (2001)

    CAS  Google Scholar 

  11. B. Nikoobakht, M.A. El-Sayed, Chem. Mater. 15, 1957 (2003)

    CAS  Google Scholar 

  12. A.A. Mohamed, Z. Salmi, S.A. Dahoumane, A. Mekki, B. Carbonnier, M.M. Chehimi, Adv. Colloid Interface Sci. 225, 16 (2015)

    CAS  PubMed  Google Scholar 

  13. A.T. Overton, A.A. Mohamed, Inorg. Chem. 10, 5500 (2012)

    Google Scholar 

  14. S.N. Neal, S.A. Orefuwa, A.T. Overton, R.J. Staples, A.A. Mohamed, Inorganics 1, 70 (2013)

    CAS  Google Scholar 

  15. A.A. Mohamed, S.N. Neal, B. Atallah, N.D. AlBab, H.A. Alawadhi, Y. Pajouhafsar, H.E. Abdou, B. Workie, E. Sahle-Demessie, C. Han, M. Monge, J.M. Lopez-de-Luzuriaga, J.H. Reibenspies, M.M. Chehimi, J. Organomet. Chem. 877, 1 (2018)

    CAS  Google Scholar 

  16. A.A.L. Ahmad, S. Panicker, M.M. Chehimi, M. Monge, J.M. Lopez-De-Luzuriaga, A.A. Mohamed, A.E. Bruce, M.R.M. Bruce, Catal. Sci. Technol. 9, 6059 (2019)

    CAS  Google Scholar 

  17. A.A.L. Ahmad, J.B.M. Parambath, P.S. Postnikov, O. Guselnikova, M.M. Chehimi, M.R.M. Bruce, A.E. Bruce, A.A. Mohamed, Langmuir 37, 8897 (2021)

    CAS  PubMed  Google Scholar 

  18. M.K. Hameed, J.B.M. Parambath, M.T. Gul, A.A. Khan, Y. Park, C. Han, A.A. Mohamed, Appl. Surf. Sci. 583, 152504 (2022)

    CAS  Google Scholar 

  19. D. Hetemi, V. Noël, J. Pinson, Biosensors 10(1), 4 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Daoudi, M. Gaidi, S. Columbus, M. Shameer, H. Alawadhi, Mater. Sci. Semicond. Process 138, 106288 (2022)

    CAS  Google Scholar 

  21. X. Zhang, M. Zhou, Y. Zhong et al., Res. Chem. Intermed. 48, 3347 (2022)

    CAS  Google Scholar 

  22. L. Zhang, W.B. Miu, J. Yao et al., Res. Chem. Intermed. 44, 3365 (2018)

    CAS  Google Scholar 

  23. M. Abd El-Aal, T. Seto, Res. Chem. Intermed. 46, 3741 (2020)

    CAS  Google Scholar 

  24. H. Zhou, Y. Liang, J. Zhang et al., Res. Chem. Intermed. 48, 117 (2022)

    CAS  Google Scholar 

  25. L. Hostert, C. Blanc, A.J.G. Zarbin, E. Anglaret, E.S. Orth, New J. Chem. 45, 3886 (2021)

    CAS  Google Scholar 

  26. S. Yang, X. Dai, B.B. Stogin, T.S. Wong, Proc. Natl. Acad. Sci. 113, 268 (2016)

    CAS  PubMed  Google Scholar 

  27. S. Rajoriya, S. Bargole, V.K. Saharan, Ultrason. Sonochem. 34, 183 (2017)

    CAS  PubMed  Google Scholar 

  28. K. Sneha, M. Sathishkumar, S. Kim, Y.S. Yun, Process Biochem. 45, 1450 (2010)

    CAS  Google Scholar 

  29. S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi, Nanoscale Res. Lett. 9, 1 (2014)

    CAS  Google Scholar 

  30. S. Ruan, X. Li, T. Jiang, Mater. Chem. Phys. 255, 123582 (2020)

    CAS  Google Scholar 

  31. Z. Wang, L. Feng, D. **ao, N. Li, Y. Li, D. Cao, Z. Shi, Z. Cui, N. Lu, Nanoscale 9, 16749 (2017)

    CAS  PubMed  Google Scholar 

  32. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, Nat. Photon. 5, 682 (2011)

    Google Scholar 

  33. S. Kundu, S. Panigrahi, S. Praharaj, S. Basu, S.K. Ghosh, A. Pal, T. Pal, Nanotechnology 18, 75712 (2007)

    Google Scholar 

  34. J. Zhu, J. Gao, J.J. Li, J.W. Zhao, Appl. Surf. Sci. 322, 136 (2014)

    CAS  Google Scholar 

  35. A. de Barros, F.M. Shimizu, C.S. de Oliveira, F.A. Sigoli, D.P. dos Santos, I.O. Mazali, A.C.S. Appl, Nano Mater. 3, 8138 (2020)

    Google Scholar 

  36. F.S. Ameer, C.U. Pittman Jr., D. Zhang, J. Phys. Chem. C 117, 27096 (2013)

    CAS  Google Scholar 

  37. J. Guthmuller, B. Champagne, J. Phys. Chem. A 112, 3215 (2008)

    CAS  PubMed  Google Scholar 

  38. J. Yu, M. Shen, S. Liu, F. Li, D. Sun, T. Wang, Appl. Surf. Sci. 406, 285 (2017)

    CAS  Google Scholar 

  39. J. Wang, C. Qiu, X. Mu, H. Pang, X. Chen, D. Liu, Talanta 210, 120631 (2020)

    CAS  PubMed  Google Scholar 

  40. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J Phys. Chem. C 111, 13794 (2007)

    Google Scholar 

  41. A. Childs, E. Vinogradova, F. Ruiz-Zepeda, J.J. Velazquez-Salazar, M.J. Jose-Yacaman, Raman Spectrosc. 47, 651 (2016)

    CAS  Google Scholar 

  42. Z. Yi, X. Xu, J. Luo, X. Li, Y. Yi, X. Jiang, Y. Yi, Y. Tang, Phys. B Condens. Matter 438, 22 (2014)

    CAS  Google Scholar 

  43. C. D’Andrea, M.J. Faro, G. Bertino, P.M. Ossi, F. Neri, S. Trusso, P. Musumeci, M. Galli, N. Cioffi, A. Irrera, Nanotechnology 27, 375603 (2016)

    PubMed  Google Scholar 

  44. E. Fazio, F. Neri, C. D’Andrea, P.M. Ossi, N. Santo, S.J. Trusso, Raman Spectrosc. 42, 1298 (2011)

    CAS  Google Scholar 

  45. J. Dong, C. Yang, H. Wu, Q. Wang, Y. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, M. Sun, ACS Omega 7, 3312 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

CH acknowledges the support of the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A4A1032746 and 2021R1A2C1093183). AAM acknowledges the University of Sharjah support of the competitive grants 160-2142-029-P and 150-2142-017-P.

Author information

Authors and Affiliations

Authors

Contributions

JB and GK wrote the first draft of the manuscript. CH and AAM edited the manuscript. AAM supervised the laboratory work.

Corresponding author

Correspondence to Ahmed A. Mohamed.

Ethics declarations

Competing interests

Not applicable.

Availability of data and materials

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parambath, J.B.M., Kim, G., Han, C. et al. SERS performance of cubic-shaped gold nanoparticles for environmental monitoring. Res Chem Intermed 49, 1259–1271 (2023). https://doi.org/10.1007/s11164-022-04913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04913-4

Keywords

Navigation