Log in

Experimental study for adsorption and photocatalytic reaction of ethyl methylphosphonate molecule as organophosphorus compound adsorbed at surface of titanium dioxide under UV irradiation in ambient condition

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The adsorption and photocatalytic degradation of Ethyl methylphosphonate (EMPA) on powdery TiO2 film has experimentally investigated using attenuated total reflection-infrared Fourier transform spectroscopy (ATR-FTIR) in ambient condition. Characteristic IR frequency as P-O-C vibration mode as EtO was observed by EMPA adsorbed at the surface of TiO2. By TiO2 photocatalysis, the adsorbed EMPA was decomposed to methyl phosphonic acid and phosphoric acid. The increment of IR intensity of which is assigned to Ti–O-P-O-Ti of EMPA was accompanied with increasing the IR peak intensity assigned to MPA. About that, we suggest that the appearance of the Ti–O-P-O-Ti of EMPA by the TiO2 photocatalysis is regarded as acceleration of the hydrolysis of EMPA by the surface OH groups of TiO2. The plausible adsorption structure and the photocatalytic reaction mechanism of EMPA at the surface of TiO2 photocatalyst were elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

Data availability

The data used in this manuscript can be available.

References

  1. N. Serpone, E. Pelizzetti, H. Hidaka, in Photocatalytic Purification and Treatment of Water and Air ed. By D. F. Ollis, H. Al-Ekabi, (Elsevier, London, 1993) pp. 225.

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  3. A. Mills, L.S. Hunte, J. Photochem. Photobiol. A 108, 1 (1997)

    Article  CAS  Google Scholar 

  4. A. Fujishima, K. Hashimoto, T. Watanabe, Photocatalysis (BKC Inc., Tokyo, 1999).

    Google Scholar 

  5. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  CAS  Google Scholar 

  6. M. Kaneko, I. Ohkura, Photocatalysis (Kodansha-Springer, Tokyo, 2002), pp 123 and pp 157

  7. H. Chen, C.E. Nanayakkara, V.H. Grassian, Chem. Rev. 112, 5919 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. L. Kan, J. ****, in Nanostructures Photocatalysts Advanced Functional Materials ed. By H. Yamashita, H. Li (Springer, Switzerland, 2016), pp 147

  10. Y. J. Jang, K. Kim, O. G. Tsay, D. A. Atwood, D. G. Churchill (2015) Chem. Rev. 115, PR1

  11. A.V. Vorontsov, L. Dayvdov, E.P. Reddy, C. Lion, E.N. Savinov, P.G. Smirniotis, New J. Chem. 26, 732 (2002)

    Article  CAS  Google Scholar 

  12. D.V. Kozlov, A.V. Vorontsov, P.G. Smirniotis, E.N. Savinov, Appl. Catal. B 42, 77 (2003)

    Article  CAS  Google Scholar 

  13. I.N. Martyanov, K.J. Klabunde, Envron. Sci. Technol. 37, 3448 (2003)

    Article  CAS  Google Scholar 

  14. A. V. Vorontsov, L. Claude, E. N. Savinov, P. G. I, Smirniotis (2003) J. Catal. 220, 414

  15. A.D. Panayotov, D.K. Paul, J.T. Yates Jr., J. Phys. Chem. B 107, 10571 (2003)

    Article  CAS  Google Scholar 

  16. A.D. Panayotov, P. Kondratyuk, J.T. Yates Jr., Langmuir 20, 3674 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. L. T. Thompson, A. D. Panayotov, J. T. Yates, Jr. I. Martyanov, K. Klabunde (2004), J. Phys. Chem. B 108 17857

  18. K. E. O`Shea, S. Beightol, I. Garcia, M. Aguilar, D. V. Kalen, W. J. Cooper, (1997) J. Photochem. Photobiol. A 107, 221

  19. K E O`Shea, I Garcia, M Aguilar (1997) Res. Chem. Intermed. 23, 325

  20. T.N. Obee, S. Satyapal, J. Photochem. Photobiol. A 118, 45 (1998)

    Article  CAS  Google Scholar 

  21. E.A. Kozlova, A.V. Vorontsov, Appl. Catal. B 63, 114 (2006)

    Article  CAS  Google Scholar 

  22. A.V. Vorontsov, Y.-C. Chen, P.G. Smirniotis, J. Hazard. Mater. 113, 89 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. J.A. Moss, S.H. Szczepankiewicz, E. Park, M.R. Hoffmann, J. Phys. Chem. B 109, 19779 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. D.A. Trubistyn, A.V. Vorontsov, J. Phys. Chem. B 109, 21884 (2005)

    Article  Google Scholar 

  25. A. Kiselev, M. Andersson, A. Mattson, A. Shchukarev, S. Sjoberg, A. Palmqvist, L. Osterlund, J. Photochem. Photobiol. A 184, 125 (2006)

    Article  CAS  Google Scholar 

  26. N. Petrea, R. Petre, G. Epure, V. Somoghi, L.C. Tanase, C.M. Teodorescu, S. Neatu, Chem. Comm. 52, 12956 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. T. Hirakawa, K. Sato, A. Komano, S. Kishi, C.K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto, K. Takeuchi, J. Phys. Chem. C 114, 2305 (2010)

    Article  CAS  Google Scholar 

  28. K. Sato, T. Hirakawa, A. Komano, S. Kishi, C.K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto, K. Takeuchi, Appl. Catal. B 106, 316 (2011)

    Article  CAS  Google Scholar 

  29. T. Hirakawa, K. Sato, A. Komano, S. Kishi, C.K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto, K. Takeuchi, J. Photochem. Photobiol. A 264, 12 (2013)

    Article  CAS  Google Scholar 

  30. A. Komano, T. Hirakawa, K. Sato, S. Kishi, C.K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto, K. Takeuchi, Appl. Catal. B 134–135, 19 (2013)

    Article  Google Scholar 

  31. S. Kishi, T. Hirakawa, K. Sato, A. Komano, C.K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto, K. Takeuchi, Chem. Lett. 42, 518 (2013)

    Article  CAS  Google Scholar 

  32. V. Stengl, M. Marikova, S. Bakardjieva, J. Subrt, F. Oplustil, M. Olsanska, J. Chem. Technol. Biotechnol. 80, 754 (2005)

    Article  CAS  Google Scholar 

  33. C.N. Rusa, J.T. Yates Jr., J. Phys. Chem. B 104, 12299 (2000)

    Article  Google Scholar 

  34. D.A. Panayotov, J.R. Morris, Langmuir 25, 3652 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. D.A. Panayotov, J.R. Morris, J. Phys. Chem. C 113, 15684 (2009)

    Article  CAS  Google Scholar 

  36. C.N. Rusa, J.T. Yates Jr., J. Phys. Chem. B 104, 12292 (2000)

    Article  Google Scholar 

  37. G.W. Wagner, P.W. Bartram, Langmuir 15, 8113 (1999)

    Article  CAS  Google Scholar 

  38. G.W. Wagner, Q. Chen, Y. Wu, J. Phys. Chem. C 112, 11901 (2008)

    Article  CAS  Google Scholar 

  39. C.A.S. Brevett, K.B. Sumpter, J. Pence, R.G. Nickol, B.E. King, C.V. Giannaras, H.D. Durst, J. Phys. Chem. C 113, 6622 (2009)

    Article  CAS  Google Scholar 

  40. A. Waghe, S.M. Kanan, I. Abu-Yousef, B. Jensen, C.P. Tripp, Res. Chem. Intermed. 32, 613 (2006)

    Article  CAS  Google Scholar 

  41. C.K. Bryant, P.T. LaPuma, G.L. Hook, E. Houser, J. Anal. Chem. 79, 2334 (2007)

    Article  CAS  Google Scholar 

  42. L. Landstorm, L. Orebrand, K. Svensson, P.O. Anderson, J. Anal. At. Spectrom. 30, 2394 (2015)

    Article  Google Scholar 

  43. D. Wiktelius, L. Ahlinder, A. Larsson, K.H. Holmgren, R. Norlin, Talanta 186, 622 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. Y.-C. Yang, Acc. Chem. Res. 32, 109 (1999)

    Article  CAS  Google Scholar 

  45. D. Marciano, I. Columbus, S. Elias, M. Goldvaser, O. Shoshanim, N. Ashkenazi, Y. Zafrani, J. Org. Chem. 77, 10042 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. Degussa Technol. Bull. No#56, 5th ed.; A. G. Degussa: Frankfrut, Germany, 1992.

  47. L.C. Thomas, R.A. Chittenden, Spectrochim. Acta 20, 489 (1964)

    Article  CAS  Google Scholar 

  48. E.O. Gonzalez-Yanez, G.A. Fuentes, M.E. Hernandez-Teran, J.C. Fierro-Gonzalez, Appl. Catal. A 464–465, 374 (2013)

    Article  Google Scholar 

  49. W.-C. Wu, C.-C. Chuang, J.-L. Lin, J. Phys. Chem. B 104, 8719 (2000)

    Article  CAS  Google Scholar 

  50. J.M. Coronado, S. Kataoka, I. Tejedor-Tejedor, M.A. Anderson, J. Catal. 219, 219 (2003)

    Article  CAS  Google Scholar 

  51. National Institute of Standards and Technology, NIST Chemistry WebBook, SRD 69, US-Department of Commerce.

  52. L.C. Thomas, R.A. Chittenden, Spectrochim. Acta 21, 1905 (1965)

    Article  CAS  Google Scholar 

  53. A. Kiselev, M. Andersson, A. Mattson, A. Shchukarev, S. Sjoberg, A. Palmqvist, L. Osterlund, Sur. Sci. 584, 98 (2005)

    Article  CAS  Google Scholar 

  54. L.C. Thomas, R.A. Chittenden, Spectrochim. Acta 26A, 781 (1970)

    Article  Google Scholar 

  55. C.M. Mikulski, N.M. Karayannis, L.L. Pytlewski, J. Inorg. Nucl. Chem. 36, 971 (1974)

    Article  CAS  Google Scholar 

  56. M. Minella, M.G. Faga, V. Maurino, C. Minero, E. Pelizzetti, S. Coluccia, G. Martra, Langmuir 26, 2521 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. C. Morterra, J Chem. Soc. Faraday Trans.1 84, 1617 (1988)

    Article  CAS  Google Scholar 

  58. T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, J. Molec. Struc. 700, 175 (2004)

    Article  CAS  Google Scholar 

  59. G. C. Pimentel, A. L. McClellan, The Hydrogen Bond (W. H. Freeman and Co.: San Francisco and London, 1960) Chapter 8, pp226–254.

  60. M.B. Mitchell, V.N. Sheinker, E.A. Mintz, J. Phys. Chem. B 101, 11192 (1997)

    Article  CAS  Google Scholar 

  61. M.K. Templeton, W.H. Weinberg, J. Am. Chem. Soc. 107, 97 (1985)

    Article  CAS  Google Scholar 

  62. M.K. Templeton, W.H. Weinberg, J. Am. Chem. Soc. 107, 774 (1985)

    Article  CAS  Google Scholar 

  63. B.C. Barja, M.I. Tejedor-Tejedor, M.A. Anderson, Langmuir 15, 2316 (1999)

    Article  CAS  Google Scholar 

  64. M.I. Tejedor-Tejedor, M.A. Anderson, Langmuir 6, 602 (1990)

    Article  CAS  Google Scholar 

  65. B. Aurian-Blajeni, M.M. Boucher, Langmuir 5, 170 (1989)

    Article  CAS  Google Scholar 

  66. K. Range, D. Riccardi, Q. Cui, M. Elstner, D.M. York, PCCP 7, 3070 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. A. Moser, K. Range, D.M. York, J. Phys. Chem. B 114, 13911 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from Research and Development Program for Resolving Critical Issue, commissioned by Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Hirakawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirakawa, T., Nishimoto, C.K., Komano, A. et al. Experimental study for adsorption and photocatalytic reaction of ethyl methylphosphonate molecule as organophosphorus compound adsorbed at surface of titanium dioxide under UV irradiation in ambient condition. Res Chem Intermed 47, 1563–1579 (2021). https://doi.org/10.1007/s11164-020-04389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04389-0

Keywords

Navigation