Log in

Synthesis, solar cell application, and biological study of vinyl substituted isophorone derivatives

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, isophorone derivatives, which are single step aldol products, were designed and synthesized. Our overview of the synthesis of solar cell application and biological applications of series vinyl substituted isophorone compounds is reported. All synthesized compounds were characterized both through experimental techniques and calculations with density functional theory. Additionally, we investigated the photophysical properties of small organic compounds for organic bulk heterojunction photovoltaic cells. The solar cell efficiency results were compared and compound 4 was found to be more efficient than the other compounds. It was found that the optical quantum yield values were very close. Isophorone derivatives showed better antioxidant activities, which were DPPH, metal chelating, reducing activity, and antimicrobial activities against Salmonella typhimurium, Klebsiella pneumonia, Candida albicans, Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. Compound 7 (which is substituted quinoline) and compound 5 (which is substituted cyno) had the highest antioxidant effect. The 4-brom phenyl, 4-cyno phenyl were used against gram negative bacteria and the 4-ter-butyl phenyl group was indicated for gram positive bacteria and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Nicolas, A. Michaud, M. Leclerc, Adv. Mater. 19(17), 2295 (2007)

    Article  CAS  Google Scholar 

  2. B. Nicolas et al., J. Am. Chem. Soc. 130(2), 732 (2008)

    Article  CAS  Google Scholar 

  3. S. Yamada et al., S Polym. 51(26), 6174 (2010)

    Article  CAS  Google Scholar 

  4. C. Shuttle et al., Proc. Natl. Acad. Sci. 107(38), 16448 (2010)

    Article  PubMed  Google Scholar 

  5. R.B. Ross et al., Nat. Mater. 8(3), 208 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. D. Gebeyehu et al., Synth. Metals 118(1–3), 1 (2001)

    Article  CAS  Google Scholar 

  7. J. Shen et al., Chem. Commun. 48(31), 3686 (2012)

    Article  CAS  Google Scholar 

  8. Y.Y. Choi et al., Sol. Energy Mater. Sol. Cells 96, 281 (2012)

    Article  CAS  Google Scholar 

  9. F. Bonaccorso et al., Nat. Photon. 4(9), 611 (2010)

    Article  CAS  Google Scholar 

  10. S. Pillai et al., J. Fluoresc. 22(4), 1021 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Eryilmaz et al., Acta Phys. Pol. A 132(3), 738 (2017)

    Article  CAS  Google Scholar 

  12. M. Frisch et al., Gaussian 09 Rev.C.01 (Gaussian Inc., Wallingford, 2009)

    Google Scholar 

  13. R. Dennington, T. Keith, J. Millam, GaussView, version 5.0 (Semichem Inc., Shawnee Mission, 2009)

    Google Scholar 

  14. S. Di Bella et al., J. Am. Chem. Soc. 119(40), 9550 (1997)

    Article  Google Scholar 

  15. S. Eryılmaz, Sak. Univ. J. Sci. 22(6), 1638 (2018)

    Google Scholar 

  16. S. Eryılmaz et al., J. Mol. Struct. 1108, 209 (2016)

    Article  CAS  Google Scholar 

  17. M. Khimenko, A. VV, G. NN, Mezhdunarodnaya Kniga 39 Dimitrova ul., 113095, Moscow, Russia, p. 2914 (1973)

  18. A.T.R. Williams, S.A. Winfield, J.N. Miller, Analyst 108(1290), 1067 (1983)

    Article  CAS  Google Scholar 

  19. R.F. Chen, Anal. Lett. 1(1), 35 (1967)

    Article  CAS  Google Scholar 

  20. H. Du et al., Photochem. Photobiol. 68(2), 141 (1998)

    CAS  Google Scholar 

  21. R. Antiochia et al., Electroanal. Int. J. Devot. Fundament. Pract. Asp Electroanal 16(17), 1451 (2004)

    CAS  Google Scholar 

  22. E. Portenkirchner et al., J. Organomet. Chem. 716, 19 (2012)

    Article  CAS  Google Scholar 

  23. M.S. Blois, Nature 181(4617), 1199 (1958)

    Article  CAS  Google Scholar 

  24. E. Pelit, J. Turk. Chem. Soc. Sect. A Chem. 4(2), 631 (2017)

    Article  CAS  Google Scholar 

  25. M. Gul et al., J. Chem. 135, 8525 (2013)

    Google Scholar 

  26. T.C. Dinis, V.M. Madeira, L.M. Almeida, Arch. Biochem. Biophys. 315(1), 161 (1994)

    Article  CAS  PubMed  Google Scholar 

  27. T. Ak, İ. Gülçin, Chemico-biological interactions 174(1), 27 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. G.C. Yen, H.-Y. Chen, J. Agric. Food Chem. 43(1), 27 (1995)

    Article  CAS  Google Scholar 

  29. E.B. Ay et al., Indian journal of pharmaceutical education and research 52(4), 128 (2018)

    Google Scholar 

  30. R.A. Houghten et al., Nature 354(6348), 84 (1991)

    Article  CAS  PubMed  Google Scholar 

  31. S. Eryılmaz et al., J. Mol. Struct. 1122, 219 (2016)

    Article  CAS  Google Scholar 

  32. J.M. Andrew, J. Antimicrob. Chemother. 48(suppl_1), 5 (2001)

    Article  Google Scholar 

  33. J.M. Tour, Chem. Rev. 96(1), 537 (1996)

    Article  CAS  PubMed  Google Scholar 

  34. J. Chen et al., J. Org Chem 65(10), 2900 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. C. Wu et al., Dyes Pigm. 97(2), 273 (2013)

    Article  CAS  Google Scholar 

  36. M. Weng et al., Dyes Pigm. 35(4), 297 (1997)

    Article  CAS  Google Scholar 

  37. M. Giardinetti et al., New J. Chem. 41(15), 7331 (2017)

    Article  CAS  Google Scholar 

  38. G. Barrow, Physical Chemistry, Chap. 7 (MC Graw-Hill, New York, 1988)

    Google Scholar 

  39. S.A. Grebenyuk, I.F. Perepichka, A.F. Popov, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58(13), 2913 (2002)

    Article  Google Scholar 

  40. M. Cipolloni et al., ARKIVOC: Online Journal of Organic Chemistry, (2011)

  41. V. Ramkumar et al., CrystEngComm 15(13), 2438 (2013)

    Article  CAS  Google Scholar 

  42. K.H. Park et al., React. Funct. Polym. 40(2), 169 (1999)

    Article  CAS  Google Scholar 

  43. O.O. Ajani, O.C. Nwinyi, J. Heterocycl. Chem. 47(1), 179 (2010)

    CAS  Google Scholar 

  44. B.P. Bandgar et al., Bioorg. Med. Chem. 17(24), 8168 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. J. Mai et al., J. Mater. Chem. A 5(23), 11739 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Gul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, Z., Pıravadılı Mucur, S., Canımkurbey, B. et al. Synthesis, solar cell application, and biological study of vinyl substituted isophorone derivatives. Res Chem Intermed 45, 5625–5639 (2019). https://doi.org/10.1007/s11164-019-03924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03924-y

Keywords

Navigation