Log in

Photodegradation of methyl orange from wastewater on TiO2/SnS combined powders

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photodegradation of an aqueous solution of methyl orange by the TiO2/SnS powders was studied in different ratios of SnS against TiO2. The effects of the initial pH value and light resource were investigated. The SnS extends the light absorption edge of the TiO2 to ~940 nm of the SnS (1.32 eV). The results indicated that the optimal SnS proportion for the maximum degradation efficiency increased in relation to a decrease in the initial pH in both sunlight and visible light, and decreased when changing from visible light to sunlight. The pure TiO2 powder had maximum efficiency in conditions of pH 9 and visible light irradiation or in conditions of pH 7 and sunlight irradiation. In visible light, the degradation efficiency on the powders containing the SnS was larger than that on the pure TiO2 powder in a range of pH 3–7. The maximum efficiency in visible light was found to be in conditions of pH 5 and TiO2:SnS = 3:2 and 2:3, beyond which the efficiency decreased. The efficiency was, overall, larger in sunlight than in visible light. The mechanism of the effects of pH and light resource was discussed in view of the surface charge of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.J.P. Poots, G. Mckay, J.J. Healy, Removal of basic dye from effluent using wood as an adsorbent. J. Water Pollut. Control Fed. 50, 926–935 (1978)

    CAS  Google Scholar 

  2. T. Robinson, B. Chandran, P. Nigam, Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 36, 2824–2830 (2002)

    Article  CAS  Google Scholar 

  3. K.R. Gopidas, P.V. Kamat, Photoelectrochemistry in particulate systems. 11. Reduction of phenosafranin dye in colloidal TiO2 and CdS suspensions. Langmuir 5, 22–26 (1989)

    Article  CAS  Google Scholar 

  4. D. Liu, P.V. Kamat, Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films. J. Phys. Chem. 97, 10769–10773 (1993)

    Article  CAS  Google Scholar 

  5. N. Serpone, E. Borgarello, M. Grätzel, Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J. Chem. Soc. Chem. Commun. 6, 342–344 (1984)

    Article  Google Scholar 

  6. W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  7. S.T. Martin, C.L. Morison, M.R. Hoffmann, Photochemical mechanism of size-quantized vanadium-doped TiO2 particle. J. Phys. Chem. 98, 13695–13704 (1994)

    Article  CAS  Google Scholar 

  8. R. Suarez, P.K. Nair, P.V. Kamat, Photoelectrochemical behavior of Bi2S3 nanoclusters and nanostructured thin films. Langmuir 14, 3236–3241 (1998)

    Article  CAS  Google Scholar 

  9. T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hael, C. Granqvist, S. Lindquist, Photoelectrochemical and optical properties of nitrogen-doped titanium dioxide film prepared by reactive DC magnetic sputtering. J. Phys. Chem. B 107, 5709–5716 (2003)

    Article  CAS  Google Scholar 

  10. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Bandgap narrowing of titanium dioxide by sulfur do**. Appl. Phys. Lett. 81, 454–456 (2002)

    Article  CAS  Google Scholar 

  11. X.L. Gou, J. Chen, P.W. Shen, Synthesis, characterization and application of SnS x (x = 1, 2) nanoparticles. Mater. Chem. Phys. 93, 557–566 (2005)

    Article  CAS  Google Scholar 

  12. A.P. Lambros, D. Geraleas, N.A. Economou, Optical absorption edge in SnS. J. Phys. Chem. Solids 35, 537–541 (1974)

    Article  CAS  Google Scholar 

  13. T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C 6, 264–273 (2005)

    Article  CAS  Google Scholar 

  14. L. Rideh, A. Wehrer, D. Ronze, A. Zoulalian, Photocatalytic degradation of 2-chlorophenol in TiO2 aqueous suspension: modeling of reaction rate. Ind. Eng. Chem. Res. 36, 4712–4718 (1997)

    Article  CAS  Google Scholar 

  15. I. Izumi, W.W. Dunn, K.O. Wilbourn, F.R.F. Fan, A.J. Bard, Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders. J. Phys. Chem. 84, 3207–3210 (1980)

    Article  CAS  Google Scholar 

  16. A.P. Jones, R.J. Watts, Dry phase titanium dioxide-mediated photocatalysis: basis for in situ surface destruction of hazardous chemicals. J. Environ. Eng. 123, 974–981 (1997)

    Article  CAS  Google Scholar 

  17. H. Al-Ekabi, G. Edwards, W. Holden, A. Safarzadeh-Amiri, J. Story, in Chemical oxidation, ed. by W.W. Eckenfelder, A.R. Bowers, J.A. Roth (Technomic Publishing Co., Lancaster, 1992), pp. 254–261

    Google Scholar 

  18. D.D. Dionysiou, A. Khodadoust, A.M. Kern, M.T. Suidan, I. Baudin, J.M. Lainé, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal. B 24, 139–155 (2000)

    Article  CAS  Google Scholar 

  19. D. Duonghong, J. Ramsden, M. Gratzel, Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems. J. Am. Chem. Soc. 104, 2977–2985 (1982)

    Article  Google Scholar 

  20. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  21. M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martinez, An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ. Sci. Technol. 27, 1776–1782 (1993)

    Article  CAS  Google Scholar 

  22. D.W. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat, N. Serpone, in Aquatic and surface photochemistry, ed. by R.G. Zepp, G.R. Heltz, D.G. Crosby (Lewis Publishers, Boca Raton, 1994), p. 261

    Google Scholar 

  23. I. Poulios, I. Tsachpinis, Photodegradation of the textile dye reactive black 5 in the presence of semiconducting oxides. J. Chem. Technol. Biotechnol. 74, 349–357 (1999)

    Article  CAS  Google Scholar 

  24. J. Saien, M. Asgari, A.R. Soleymani, N. Taghavinia, Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings. Chem. Eng. J. 151, 295–301 (2009)

    Article  CAS  Google Scholar 

  25. T. Sauer, G. Cesconeto Neto, H.J. José, R.F.P.M. Moreira, Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A 149, 147–154 (2002)

    Article  CAS  Google Scholar 

  26. I. Ahmad, Q. Fasihullah, F.H.M. Vaid, Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. J. Photochem. Photobiol. B 82, 21–27 (2006)

    Article  CAS  Google Scholar 

  27. J.R. White, A.J. Bard, Electrochemical investigation of photocatalysis at cadmium sulfide suspensions in the presence of methylviologen. J. Phys. Chem. 89, 1947–1954 (1985)

    Article  CAS  Google Scholar 

  28. S. Kaur, V. Singh, TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. J. Hazard. Mat. 141, 230–236 (2007)

    Article  CAS  Google Scholar 

  29. T. Oyama, A. Aoshima, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO2 dispersions under sunlight irradiation. Sol. Energy 77, 525–532 (2004)

    Article  CAS  Google Scholar 

  30. C. Yang, W. Wang, Z. Shan, F. Huang, Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnS x /TiO2. J. Solid State Chem. 182, 807–812 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Associate Prof. J. P. Wu for the XRD tests and Mr. Z. Miao, Northwest Institute for Nonferrous Metal Research, for the SEM tests. The authors are also thankful for the financial assistance of the specific scientific research projects of Shaanxi Provincial Education Committee (09KJ348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H.Y., Lu, J., Cao, L.Y. et al. Photodegradation of methyl orange from wastewater on TiO2/SnS combined powders. Res Chem Intermed 38, 537–547 (2012). https://doi.org/10.1007/s11164-011-0369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0369-9

Keywords

Navigation