Log in

Food waste valorization via anaerobic processes: a review

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The increasing production of food waste worldwide and new international regulations call for the development of new technologies to treat this biowaste. Anaerobic processes are able to treat efficiently organic wastes, producing at the same time different value-added compounds. In addition, due to the lower costs and environmental impacts associated with these processes when compared to other options, they are among the most promising technologies for food waste treatment. This article reviews the state-of-the-art dealing with treatment of food waste by anaerobic processes, with emphasis on the most recent research carried out. The different processes that are assessed are anaerobic digestion for methane production, anaerobic fermentation for hydrogen and/or volatile fatty acids production and 2-stage systems. The primary issues associated with each alternative are presented, paying special attention to accumulation of ammonia and volatile fatty acids in the reactor. In addition, the latest developments to overcome the complications of each system are also described, focusing on how they improve its stability and performance. Moreover, the relevant economic and environmental research has also been reviewed, including several life cycle analyses that compare anaerobic processes with other technologies used for food waste treatment. Different case studies are also presented. Finally, recommendations for future research for the anaerobic processes studied and options for process integration are discussed. Moving towards the idea of a circular economy, a potential biorefinery for food waste valorization is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABPs:

Animal by-products

AcoD:

Anaerobic co-digestion

AD:

Anaerobic digestion

AF:

Acidogenic fermentation

AnMBR:

Anaerobic membrane bioreactor

BMP:

Biochemical methane potential

COD:

Chemical oxygen demand

CSTR:

Continuous stirred tank reactor

DF:

Dark fermentation

FAN:

Free ammonia nitrogen

FAO:

Food and Agriculture Organization

FW:

Food waste

GWP:

Global warming potential

HAc:

Acetic acid

HBu:

Butyric acid

HLa:

Lactic acid

HPr:

Propionic acid

HRT:

Hydraulic retention time

HVa:

Valeric acid

HY:

Hydrogen yield

LAB:

Lactic acid bacteria

LCA:

Life cycle analysis

MY:

Methane yield

OFMSW:

Organic fraction municipal solid waste

OLR:

Organic loading rate

S/X:

Substrate/inoculum

SRT:

Solids retention time

SSFW:

Source segregated food waste

T:

Temperature

TAN:

Total ammonia nitrogen

TEs:

Trace elements

TPASBR:

Temperature phased anaerobic sequencing batch reactor

TS:

Total solids

VFAs:

Volatile fatty acids

VHPR:

Volumetric hydrogen production rate

VMPR:

Volumetric methane production rate

VS:

Volatile solids

VSS:

Volatile suspended solids

WAS:

Waste activated sludge

WRRFs:

Water resource recovery facilities

References

  • Agyeman FO, Tao W (2014) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manage 133:268–274. doi:10.1016/j.jenvman.2013.12.016

    Article  CAS  Google Scholar 

  • Ahamed A, Chen C-L, Rajagopal R, Wu D, Mao Y, Ho IJR, Lim JW, Wang J-Y (2015) Multi-phased anaerobic baffled reactor treating food waste. Bioresour Technol 182:239–244

    Article  CAS  Google Scholar 

  • Angeriz-Campoy R, Álvarez-Gallego CJ, Romero-García LI (2015) Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (O-FMSW) with food waste (FW): enhancement of bio-hydrogen production. Bioresour Technol 194:291–296

    Article  CAS  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  • Ariunbaatar J, Panico A, Frunzo L et al (2014) Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. J Environ Manage 146:142–149. doi:10.1016/j.jenvman.2014.07.042

    Article  CAS  Google Scholar 

  • Ariunbaatar J, Panico A, Yeh DH et al (2015a) Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: substrate versus digestate heating. Waste Manag 46:176–181. doi:10.1016/j.wasman.2015.07.045

    Article  CAS  Google Scholar 

  • Ariunbaatar J, Scotto Di Perta E, Panico A et al (2015b) Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste. Waste Manag 38:388–398. doi:10.1016/j.wasman.2014.12.001

    Article  CAS  Google Scholar 

  • Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—potential benefits and drawbacks. Energies 2:226–242. doi:10.3390/en20200226

    Article  CAS  Google Scholar 

  • Banks CJ, Chesshire M, Stringfellow A (2008) A pilot-scale trial comparing mesophilic and thermophilic digestion for the stabilisation of source segregated kitchen waste. Water Sci Technol 58:1475–1481. doi:10.2166/wst.2008.513

    Article  CAS  Google Scholar 

  • Banks CJ, Chesshire M, Heaven S, Arnold R (2011a) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620. doi:10.1016/j.biortech.2010.08.005

    Article  CAS  Google Scholar 

  • Banks CJ, Salter AM, Heaven S, Riley K (2011b) Energetic and environmental benefits of co-digestion of food waste and cattle slurry: a preliminary assessment. Resour Conserv Recycl 56:71–79. doi:10.1016/j.resconrec.2011.09.006

    Article  Google Scholar 

  • Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135. doi:10.1016/j.biortech.2011.10.068

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I et al (2002) The IWA anaerobic digestion model no 1 (ADM 1). Water Sci Technol 45:65–73

    CAS  Google Scholar 

  • Bernstad A, Andersson T (2014) Food waste minimization from a life-cycle perspective. J Environ Manage 147:219–226

    Article  Google Scholar 

  • Bernstad A, la Cour Jansen J (2011) A life cycle approach to the management of household food waste—a Swedish full-scale case study. Waste Manag 31:1879–1896

    Article  CAS  Google Scholar 

  • Bernstad A, la Cour Jansen J (2012) Review of comparative LCAs of food waste management systems—current status and potential improvements. Waste Manag 32:2439–2455. doi:10.1016/j.wasman.2012.07.023

    Article  CAS  Google Scholar 

  • Bernstad A, Wenzel H, la Cour Jansen J (2016) Identification of decisive factors for greenhouse gas emissions in comparative lifecycle assessments of food waste management—an analytical review. J Clean Prod. doi:10.1016/j.jclepro.2016.01.079

    Google Scholar 

  • Blasco L, Kahala M, Tampio E, Ervasti S, Paavola T, Rintala J, Joutsjoki V (2014) Dynamics of microbial communities in untreated and autoclaved food waste anaerobic digesters. Anaerobe 29:3–9

    Article  CAS  Google Scholar 

  • Boni MR, Sbaffoni S, Tuccinardi L (2013) The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results. Waste Manag 33:1362–1371. doi:10.1016/j.wasman.2013.02.024

    Article  CAS  Google Scholar 

  • Bouallagui H (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour Technol 86:85–89. doi:10.1016/S0960-8524(02)00097-4

    Article  CAS  Google Scholar 

  • Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280. doi:10.1016/j.biortech.2012.09.081

    Article  CAS  Google Scholar 

  • Browne JD, Murphy JD (2013) Assessment of the resource associated with biomethane from food waste. Appl Energy 104:170–177. doi:10.1016/j.apenergy.2012.11.017

    Article  CAS  Google Scholar 

  • Cao X, Zhao Y (2009) The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J Mater Cycles Waste Manag 11(3):244–250

    Article  CAS  Google Scholar 

  • Carucci G, Carrasco F, Trifoni K et al (2005) Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. J Environ Eng 131:1037–1045

    Article  CAS  Google Scholar 

  • Cavinato C, Giuliano A, Bolzonella D et al (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrogen Energy 37:11549–11555. doi:10.1016/j.ijhydene.2012.03.065

    Article  CAS  Google Scholar 

  • Chang HN, Kim NJ, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10. doi:10.1007/s12257-009-3070-8

    Article  CAS  Google Scholar 

  • Chen W, Chen S, Kumarkhanal S, Sung S (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 31(15):2170–2178

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chen H, Meng H, Nie Z, Zhang M (2013a) Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Bioresour Technol 128:533–538. doi:10.1016/j.biortech.2012.10.121

    Article  CAS  Google Scholar 

  • Chen Y, Luo J, Yan Y, Feng L (2013b) Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy 102:1197–1204. doi:10.1016/j.apenergy.2012.06.056

    Article  CAS  Google Scholar 

  • Chen X, Yan W, Sheng K, Sanati M (2014) Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresour Technol 154:215–221. doi:10.1016/j.biortech.2013.12.054

    Article  CAS  Google Scholar 

  • Chen X, Yuan H, Zou D et al (2015) Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chem Eng J 273:254–260. doi:10.1016/j.cej.2015.03.067

    Article  CAS  Google Scholar 

  • Chen G, Liu G, Yan B et al (2016a) Experimental study of co-digestion of food waste and tall fescue for bio-gas production. Renew Energy 88:273–279. doi:10.1016/j.renene.2015.11.035

    Article  CAS  Google Scholar 

  • Chen H, Jiang W, Yang Y et al (2016b) State of the art on food waste research: a bibliometrics study from 1997 to 2014. J Clean Prod. doi:10.1016/j.jclepro.2015.11.085

    Google Scholar 

  • Chinellato G, Cavinato C, Bolzonella D et al (2013) Biohydrogen production from food waste in batch and semi-continuous conditions: evaluation of a two-phase approach with digestate recirculation for pH control. Int J Hydrogen Energy 38:4351–4360. doi:10.1016/j.ijhydene.2013.01.078

    Article  CAS  Google Scholar 

  • Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52(3):245–253

    Article  CAS  Google Scholar 

  • Cho S-K, Im W-T, Kim D-H et al (2013) Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis. Bioresour Technol 131:210–217. doi:10.1016/j.biortech.2012.12.100

    Article  CAS  Google Scholar 

  • Chu C-F, Ebie Y, Xu K-Q et al (2010) Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energy 35:8253–8261

    Article  CAS  Google Scholar 

  • Chu C-F, Xu K-Q, Li Y-Y, Inamori Y (2012) Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrogen Energy 37:10611–10618. doi:10.1016/j.ijhydene.2012.04.048

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8. doi:10.1016/S0960-1481(00)00019-7

    Article  CAS  Google Scholar 

  • Climenhaga MA, Banks CJ (2008) Anaerobic digestion of catering wastes: effect of micronutrients and solids retention time. Water Sci Technol 57:687–692

    Article  CAS  Google Scholar 

  • Cogan M, Antizar-Ladislao B (2016) The ability of macroalgae to stabilise and optimise the anaerobic digestion of household food waste. Biomass Bioenergy 86:146–155. doi:10.1016/j.biombioe.2016.01.021

    Article  CAS  Google Scholar 

  • Curry N, Pillay P (2012) Biogas prediction and design of a food waste to energy system for the urban environment. Renew Energy 41:200–209. doi:10.1016/j.renene.2011.10.019

    Article  CAS  Google Scholar 

  • Dahiya S, Sarkar O, Swamy YV, Mohan SV (2015) Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182:103–113. doi:10.1016/j.biortech.2015.01.007

    Article  CAS  Google Scholar 

  • Dai X, Duan N, Dong B, Dai L (2013) High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manag 33:308–316. doi:10.1016/j.wasman.2012.10.018

    Article  CAS  Google Scholar 

  • Danko AS, Pinheiro F, Abreu ÂA, Alves MM (2008) Effect of methanogenic inhibitors, inocula type, and temperature on biohydrogen production from food components. Environ Eng Manag J 7:531–536

    CAS  Google Scholar 

  • De Clercq D, Wen Z, Fan F, Caicedo L (2016) Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: a case study in Bei**g. Renew Sustain Energy Rev 59:1676–1685. doi:10.1016/j.rser.2015.12.323

    Article  Google Scholar 

  • De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. doi:10.1016/j.biortech.2012.02.079

    Article  CAS  Google Scholar 

  • De Vrieze J, De Lathouwer L, Verstraete W, Boon N (2013) High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Res 47:3732–3741. doi:10.1016/j.watres.2013.04.020

    Article  CAS  Google Scholar 

  • Dobbs R, Oppenheim J, Thompson F et al (2011) Resource revolution: meeting the world’s energy, materials, food, and water needs. McKinsey Global Institute. http://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/resource-revolution. Accessed 03 March 2016

  • Drennan MF, DiStefano TD (2014) High solids co-digestion of food and landscape waste and the potential for ammonia toxicity. Waste Manag 34:1289–1298. doi:10.1016/j.wasman.2014.03.019

    Article  CAS  Google Scholar 

  • Dung Thi NB, Lin C-Y, Kumar G (2016) Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. J Clean Prod. doi:10.1016/j.jclepro.2016.02.034

    Google Scholar 

  • Elbeshbishy E, Hafez H, Dhar BR, Nakhla G (2011a) Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int J Hydrogen Energy 36:11379–11387. doi:10.1016/j.ijhydene.2011.02.067

    Article  CAS  Google Scholar 

  • Elbeshbishy E, Hafez H, Nakhla G (2011b) Ultrasonication for biohydrogen production from food waste. Int J Hydrogen Energy 36:2896–2903. doi:10.1016/j.ijhydene.2010.12.009

    Article  CAS  Google Scholar 

  • El-Mashad HM, McGarvey JA, Zhang R (2008) Performance and microbial analysis of anaerobic digesters treating food waste and dairy manure. Biol Eng 1:235

    CAS  Google Scholar 

  • Elsamadony M, Tawfik A, Suzuki M (2015) Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl Energy 149:272–282. doi:10.1016/j.apenergy.2015.03.127

    Article  CAS  Google Scholar 

  • Eriksson O, Bisaillon M, Haraldsson M, Sundberg J (2016) Enhancement of biogas production from food waste and sewage sludge—environmental and economic life cycle performance. J Environ Manage 175:33–39. doi:10.1016/j.jenvman.2016.03.022

    Article  CAS  Google Scholar 

  • European Community (1975) Directive 775/442/EEC on waste, OJ L194, pp 39–41

  • European Community (1999) Directive 1999/31/EC on the landfill of waste, OJ L 182, pp 1–19

  • European Community (2009) RÈGLEMENT (CE) No 1069/2009 DU PARLEMENT EUROPÉEN ET DU CONSEIL du 21 octobre 2009

  • European Community (2011) RÈGLEMENT (UE) No 142/2011 DE LA COMMISSION du 25 février 2011

  • Facchin V, Cavinato C, Fatone F et al (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of food waste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77. doi:10.1016/j.bej.2012.10.004

    Article  CAS  Google Scholar 

  • FAO (2012) Towards the future we want: end hunger and make the transition to sustainable agricultural and food systems. Rome

  • Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—linking process to microbial communities. FEMS Microbiol Ecol 74:226–240

    Article  CAS  Google Scholar 

  • Ferreira LC, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2014) Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242:254–259. doi:10.1016/j.cej.2013.08.041

    Article  CAS  Google Scholar 

  • Fisgativa H, Tremier A, Dabert P (2016) Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manag. doi:10.1016/j.wasman.2016.01.041

    Google Scholar 

  • Fitamo T, Boldrin A, Boe K et al (2016) Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Bioresour Technol 206:245–254. doi:10.1016/j.biortech.2016.01.085

    Article  CAS  Google Scholar 

  • Fontanille P, Kumar V, Christophe G et al (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449. doi:10.1016/j.biortech.2012.02.091

    Article  CAS  Google Scholar 

  • Forster-Carneiro T, Pérez M, Romero LI (2008) Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour Technol 99:6994–7002

    Article  CAS  Google Scholar 

  • Ghanem II, Guowei G, **fu Z (2001) Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation. Renew Energy 23:673–684. doi:10.1016/S0960-1481(00)00152-X

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F et al (2015a) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. doi:10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  • Ghimire A, Valentino S, Frunzo L et al (2015b) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrogen Energy 40:16045–16055. doi:10.1016/j.ijhydene.2015.09.117

    Article  CAS  Google Scholar 

  • Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41. doi:10.1016/j.wasman.2015.06.008

    Article  CAS  Google Scholar 

  • Gou C, Yang Z, Huang J et al (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 105:146–151. doi:10.1016/j.chemosphere.2014.01.018

    Article  CAS  Google Scholar 

  • Grim J, Malmros P, Schnürer A, Nordberg Å (2015) Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant—heat demand and biogas production. Energy 79:419–427. doi:10.1016/j.energy.2014.11.028

    Article  Google Scholar 

  • Grimberg SJ, Hilderbrandt D, Kinnunen M, Rogers S (2015) Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester—assessment of variable loadings on system performance. Bioresour Technol 178:226–229. doi:10.1016/j.biortech.2014.09.001

    Article  CAS  Google Scholar 

  • Gunders D (2012) Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill

  • Guo XM, Trably E, Latrille E et al (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrogen Energy 39:7476–7485. doi:10.1016/j.ijhydene.2013.08.079

    Article  CAS  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U (2011) Global food losses and food waste: extent, causes and prevention

  • Haider MR, Zeshan Yousaf S et al (2015) Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour Technol 190:451–457. doi:10.1016/j.biortech.2015.02.105

    Article  CAS  Google Scholar 

  • Han S-K, Shin H-S (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577. doi:10.1016/j.ijhydene.2003.09.001

    Article  CAS  Google Scholar 

  • Han W, Liu DN, Shi YW et al (2015a) Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresour Technol 180:54–58. doi:10.1016/j.biortech.2014.12.067

    Article  CAS  Google Scholar 

  • Han W, Ye M, Zhu AJ et al (2015b) Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour Technol 191:24–29. doi:10.1016/j.biortech.2015.04.120

    Article  CAS  Google Scholar 

  • Han W, Fang J, Liu Z, Tang J (2016) Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour Technol 202:107–112. doi:10.1016/j.biortech.2015.11.072

    Article  CAS  Google Scholar 

  • He M, Sun Y, Zou D et al (2012) Influence of temperature on hydrolysis acidification of food waste. Procedia Environ Sci 16:85–94. doi:10.1016/j.proenv.2012.10.012

    Article  CAS  Google Scholar 

  • Heo NH, Park SC, Lee JS et al (2003) Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge. Appl Biochem Biotechnol 105–108:567–579. doi:10.1385/ABAB:107:1-3:567

    Article  Google Scholar 

  • Hong C, Haiyun W (2010) Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology. Bioresour Technol 101:5487–5493. doi:10.1016/j.biortech.2010.02.013

    Article  CAS  Google Scholar 

  • Iacovidou E, Ohandja D-G, Voulvoulis N (2012) Food waste co-digestion with sewage sludge—realising its potential in the UK. J Environ Manage 112:267–274. doi:10.1016/j.jenvman.2012.07.029

    Article  Google Scholar 

  • Ismail F, Abd-Aziz S, MeiLing C, Hassan MA (2009) Statistical optimization of biohydrogen production using food waste under thermophilic conditions

  • Izumi K, Okishio Y, Nagao N et al (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad 64:601–608. doi:10.1016/j.ibiod.2010.06.013

    Article  CAS  Google Scholar 

  • Jabeen M, Yousaf S, Haider MR, Malik RN (2015) High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int Biodeterior Biodegrad 102:149–153. doi:10.1016/j.ibiod.2015.03.023

    Article  CAS  Google Scholar 

  • Jang S, Kim D-H, Yun Y-M et al (2015) Hydrogen fermentation of food waste by alkali-shock pretreatment: microbial community analysis and limitation of continuous operation. Bioresour Technol 186:215–222. doi:10.1016/j.biortech.2015.03.031

    Article  CAS  Google Scholar 

  • Jiang J, Zhang Y, Li K et al (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530. doi:10.1016/j.biortech.2013.06.025

    Article  CAS  Google Scholar 

  • ** Y, Chen T, Chen X, Yu Z (2015) Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Appl Energy 151:227–236. doi:10.1016/j.apenergy.2015.04.058

    Article  CAS  Google Scholar 

  • Kangle KM, Kore SV, Kore VS, Kulkarni GS (2010) Recent trends in anaerobic codigestion: a review. Universal J Environ Res Technol 2:210–219

    Google Scholar 

  • Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Bio/Technol 12:257–284

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Selvam A, Wong JWC (2016) Hydrolysis-acidogenesis of food waste in solid–liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production. Bioresour Technol 200:366–373. doi:10.1016/j.biortech.2015.10.017

    Article  CAS  Google Scholar 

  • Kawai M, Nagao N, Tajima N et al (2014) The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresour Technol 157:174–180. doi:10.1016/j.biortech.2014.01.018

    Article  CAS  Google Scholar 

  • Khoo HH, Lim TZ, Tan RBH (2010) Food waste conversion options in Singapore: environmental impacts based on an LCA perspective. Sci Total Environ 408:1367–1373. doi:10.1016/j.scitotenv.2009.10.072

    Article  CAS  Google Scholar 

  • Kim D-H, Kim M-S (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. doi:10.1016/j.biortech.2012.09.088

    Article  CAS  Google Scholar 

  • Kim D-H, Oh S-E (2011) Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Manag 31:1943–1948. doi:10.1016/j.wasman.2011.05.007

    Article  CAS  Google Scholar 

  • Kim S-H, Shin H-S (2008) Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int J Hydrogen Energy 33(19):5266–5274

    Article  CAS  Google Scholar 

  • Kim HJ, Kim SH, Choi YG et al (2006) Effect of enzymatic pretreatment on acid fermentation of food waste. J Chem Technol Biotechnol 81:974–980

    Article  CAS  Google Scholar 

  • Kim S-H, Han S-K, Shin H-S (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem 43(2):213–218

    Article  CAS  Google Scholar 

  • Kim D-H, Kim S-H, Shin H-S (2009) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 45:181–187. doi:10.1016/j.enzmictec.2009.06.013

    Article  CAS  Google Scholar 

  • Kim D-H, Kim S-H, Kim K-Y, Shin H-S (2010) Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. Int J Hydrogen Energy 35:1590–1594. doi:10.1016/j.ijhydene.2009.12.041

    Article  CAS  Google Scholar 

  • Kim D-H, Kim S-H, Jung K-W et al (2011a) Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresour Technol 102:8646–8652. doi:10.1016/j.biortech.2011.03.030

    Article  CAS  Google Scholar 

  • Kim D-H, Kim S-H, Kim H-W et al (2011b) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102:8501–8506. doi:10.1016/j.biortech.2011.04.089

    Article  CAS  Google Scholar 

  • Kim D-H, Wu J, Jeong K-W et al (2011c) Natural inducement of hydrogen from food waste by temperature control. Int J Hydrogen Energy 36:10666–10673. doi:10.1016/j.ijhydene.2011.05.153

    Article  CAS  Google Scholar 

  • Kim H-W, Nam J-Y, Shin H-S (2011d) A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour Technol 102:7272–7279. doi:10.1016/j.biortech.2011.04.088

    Article  CAS  Google Scholar 

  • Kim S-H, Cheon H-C, Lee C-Y (2012) Enhancement of hydrogen production by recycling of methanogenic effluent in two-phase fermentation of food waste. Int J Hydrogen Energy 37:13777–13782. doi:10.1016/j.ijhydene.2012.03.112

    Article  CAS  Google Scholar 

  • Kim D-H, Jang S, Yun Y-M et al (2014) Effect of acid-pretreatment on hydrogen fermentation of food waste: microbial community analysis by next generation sequencing. Int J Hydrogen Energy 39:16302–16309. doi:10.1016/j.ijhydene.2014.08.004

    Article  CAS  Google Scholar 

  • Kim M-S, Na J-G, Lee M-K et al (2016) More value from food waste: lactic acid and biogas recovery. Water Res. doi:10.1016/j.watres.2016.03.064

    Google Scholar 

  • Kiran EU, Trzcinski AP, Liu Y (2015) Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresour Technol 183:47–52

    Article  CAS  Google Scholar 

  • Kjerstadius H, la Cour Jansen J, De Vrieze J et al (2013) Hygienization of sludge through anaerobic digestion at 35, 55 and 60°C. Water Sci Technol 68:2234–2239. doi:10.2166/wst.2013.486

    Article  CAS  Google Scholar 

  • Kobayashi T, Xu K-Q, Li Y-Y, Inamori Y (2012) Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen–methane fermentation process treating food wastes. Int J Hydrogen Energy 37:5602–5611. doi:10.1016/j.ijhydene.2011.12.123

    Article  CAS  Google Scholar 

  • Koch K, Plabst M, Schmidt A, Helmreich B, Drewes JE (2016) Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences. Waste Manag 47:28–33

    Article  CAS  Google Scholar 

  • Koike Y, An M-Z, Tang Y-Q et al (2009) Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J Biosci Bioeng 108:508–512. doi:10.1016/j.jbiosc.2009.06.007

    Article  CAS  Google Scholar 

  • Komemoto K, Lim YG, Nagao N et al (2009) Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manag 29:2950–2955. doi:10.1016/j.wasman.2009.07.011

    Article  CAS  Google Scholar 

  • Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng 2:1821–1830. doi:10.1016/j.jece.2014.07.024

    Article  CAS  Google Scholar 

  • Kong X, Wei Y, Xu S et al (2016a) Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresour Technol 211:65–71. doi:10.1016/j.biortech.2016.03.078

    Article  CAS  Google Scholar 

  • Kong X, Xu S, Liu J et al (2016b) Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization. J Environ Manage 166:31–37. doi:10.1016/j.jenvman.2015.10.002

    Article  CAS  Google Scholar 

  • Kosseva MR (2009) Processing of food wastes. Adv Food Nutr Res 58:57–136. doi:10.1016/S1043-4526(09)58003-5

    Article  CAS  Google Scholar 

  • Kumar M, Ou Y-L, Lin J-G (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Manag 30:602–609. doi:10.1016/j.wasman.2009.11.023

    Article  CAS  Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264. doi:10.1016/j.biortech.2010.10.035

    Article  CAS  Google Scholar 

  • Laothanachareon T, Kanchanasuta S, Mhuanthong W, Phalakornkule C, Pisutpaisal N, Champreda V (2014) Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J Environ Manag 144:143–151

    Article  CAS  Google Scholar 

  • Latif MA, Ahmad A, Ghufran R, Wahid ZA (2012) Effect of temperature and organic loading rate on upflow anaerobic sludge blanket reactor and CH4 production by treating liquidized food waste. Environ Prog Sustain Energy 31:114–121

    Article  CAS  Google Scholar 

  • Lee Y-W, Chung J (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrogen Energy 35:11746–11755. doi:10.1016/j.ijhydene.2010.08.093

    Article  CAS  Google Scholar 

  • Lee DH, Behera SK, Kim JW, Park H-S (2009) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manag 29:876–882. doi:10.1016/j.wasman.2008.06.03

    Article  CAS  Google Scholar 

  • Lee D-Y, Ebie Y, Xu K-Q et al (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101(Suppl):S42–S47. doi:10.1016/j.biortech.2009.03.037

    Article  CAS  Google Scholar 

  • Lee D-Y, Xu K-Q, Kobayashi T et al (2014) Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. Int J Hydrogen Energy 39:16863–16871. doi:10.1016/j.ijhydene.2014.08.022

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. doi:10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  • Li M, Zhao Y, Guo Q, Qian X, Niu D (2008) Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33(12):2573–2579

    Article  CAS  Google Scholar 

  • Li R, Chen S, Li X et al (2009) Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels 23:2225–2228

    Article  CAS  Google Scholar 

  • Li R, Chen S, Li X (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 160:643–654

    Article  CAS  Google Scholar 

  • Li S-L, Lin J-S, Wang Y-H, Lee Z-K, Kuo S-C, Tseng I-C, Cheng S-S (2011) Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses. Bioresour Technol 102(18):8682–8687

    Article  CAS  Google Scholar 

  • Liao X, Zhu S, Zhong D et al (2014) Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Manag 34:2278–2284. doi:10.1016/j.wasman.2014.06.014

    Article  CAS  Google Scholar 

  • Lim JW, Wang J-Y (2013) Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag 33(4):813–819

    Article  CAS  Google Scholar 

  • Lim S-J, Choi DW, Lee WG et al (2000) Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng 22:543–545. doi:10.1007/s004499900109

    Article  CAS  Google Scholar 

  • Lim S-J, Kim BJ, Jeong C-M et al (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol 99:7866–7874. doi:10.1016/j.biortech.2007.06.028

    Article  CAS  Google Scholar 

  • Lim JW, Chen C-L, Ho IJR, Wang J-Y (2013) Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour Technol 147:193–201. doi:10.1016/j.biortech.2013.08.038

    Article  CAS  Google Scholar 

  • Lim JW, Chiam JA, Wang J-Y (2014) Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour Technol 171:132–138. doi:10.1016/j.biortech.2014.08.050

    Article  CAS  Google Scholar 

  • Lin J, Zuo J, Gan L et al (2011) Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci 23:1403–1408. doi:10.1016/S1001-0742(10)60572-4

    Article  CAS  Google Scholar 

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L et al (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci. doi:10.1039/c2ee23440h

    Google Scholar 

  • Liu X, Wang W, Gao X et al (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 32:249–255. doi:10.1016/j.wasman.2011.09.027

    Article  CAS  Google Scholar 

  • Liu X, Li R, Ji M, Han L (2013) Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield. Bioresour Technol 146:317–323. doi:10.1016/j.biortech.2013.07.096

    Article  CAS  Google Scholar 

  • Lorenz H, Fischer P, Schumacher B, Adler P (2013) Current EU-27 technical potential of organic waste streams for biogas and energy production. Waste Manag 33:2434–2448. doi:10.1016/j.wasman.2013.06.018

    Article  CAS  Google Scholar 

  • Lu J, Li D, Chen L et al (2013) Simultaneous pretreatment and acidogenesis of solid food wastes by a rotational drum fermentation system with methanogenic leachate recirculation and andesite porphyry addition. Bioresour Technol 138:101–108. doi:10.1016/j.biortech.2013.03.166

    Article  CAS  Google Scholar 

  • Lü F, Hao L, Zhu M et al (2012) Initiating methanogenesis of vegetable waste at low inoculum-to-substrate ratio: importance of spatial separation. Bioresour Technol 105:169–173. doi:10.1016/j.biortech.2011.11.104

    Article  CAS  Google Scholar 

  • Lü F, Zhou Q, Wu D et al (2015) Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances. Chem Eng J 262:932–938. doi:10.1016/j.cej.2014.10.051

    Article  CAS  Google Scholar 

  • Lü F, Xu X, Shao L, He P (2016) Importance of storage time in mesophilic anaerobic digestion of food waste. J Environ Sci. doi:10.1016/j.jes.2015.11.019

    Google Scholar 

  • Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381

    Article  CAS  Google Scholar 

  • Ma J, Duong TH, Smits M et al (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102:592–599. doi:10.1016/j.biortech.2010.07.122

    Article  CAS  Google Scholar 

  • Ma H, **ng Y, Yu M, Wang Q (2014) Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl Energy 129:89–93. doi:10.1016/j.apenergy.2014.04.098

    Article  CAS  Google Scholar 

  • Mantzouridou FT, Paraskevopoulou A, Lalou S (2015) Yeast flavour production by solid state fermentation of orange peel waste. Biochem Eng J 101:1–8. doi:10.1016/j.bej.2015.04.013

    Article  CAS  Google Scholar 

  • Marin J, Kennedy KJ, Eskicioglu C (2010) Effect of microwave irradiation on anaerobic degradability of model kitchen waste. Waste Manag 30(10):1772–1779

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. doi:10.1016/j.rser.2015.02.032

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Cecchi F, Llabrés P, Pavan P (1992) Anaerobic digestion of the Barcelona central food market organic wastes. Plant design and feasibility study. Bioresour Technol 42:33–42. doi:10.1016/0960-8524(92)90085-C

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Dosta J, Romero-Güiza MS et al (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427. doi:10.1016/j.rser.2014.04.039

    Article  CAS  Google Scholar 

  • Mek**da N, Ritchie RJ (2015) Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium. Waste Manag 35:199–206. doi:10.1016/j.wasman.2014.10.018

    Article  CAS  Google Scholar 

  • Melikoglu M, Lin CSK, Webb C (2013) Analysing global food waste problem: pinpointing the facts and estimating the energy content. Cent Eur J Eng 3:157–164

    CAS  Google Scholar 

  • Meng Y, Li S, Yuan H, Zou D, Liu Y, Zhu B, Chufo A, Jaffar M, Li X (2015) Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour Technol 185:7–13

    Article  CAS  Google Scholar 

  • Micolucci F, Gottardo M, Bolzonella D, Pavan P (2014) Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int J Hydrogen Energy 39:17563–17572. doi:10.1016/j.ijhydene.2014.08.136

    Article  CAS  Google Scholar 

  • Monier V, Mudgal S, Escalon V, et al (2010) Preparatory study on food waste across EU 27

  • Motte J-C, Trably E, Escudié R et al (2013) Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol Biofuels 6:164

    Article  CAS  Google Scholar 

  • Motte J-C, Escudié R, Beaufils N et al (2014a) Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crops Prod 52:695–701

    Article  CAS  Google Scholar 

  • Motte J-C, Trably E, Hamelin J et al (2014b) Total solid content drives hydrogen production through microbial selection during thermophilic fermentation

  • Nagao N, Tajima N, Kawai M et al (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol 118:210–218. doi:10.1016/j.biortech.2012.05.045

    Article  CAS  Google Scholar 

  • Nand K, Sumithra Devi S, Viswanath P et al (1991) Anaerobic digestion of canteen wastes for Biogas production: process optimisation. Process Biochem 26:1–5. doi:10.1016/0032-9592(91)80001-6

    Article  CAS  Google Scholar 

  • Nathao C, Sirisukpoka U, Pisutpaisal N (2013) Production of hydrogen and methane by one and two stage fermentation of food waste. Int J Hydrogen Energy 38:15764–15769. doi:10.1016/j.ijhydene.2013.05.047

    Article  CAS  Google Scholar 

  • Nazlina HMY, Aini ARN, Ismail F et al (2009) Effect of different temperature, initial pH and substrate composition on biohydrogen production from food waste in batch fermentation. Asian J Biotechnol 1:42–50

    Article  CAS  Google Scholar 

  • Neves L, Oliveira R, Alves MM (2004) Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem 39:2019–2024. doi:10.1016/j.procbio.2003.10.002

    Article  CAS  Google Scholar 

  • Neves L, Gonçalo E, Oliveira R, Alves MM (2008) Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag 28:965–972. doi:10.1016/j.wasman.2007.03.031

    Article  CAS  Google Scholar 

  • Neves L, Oliveira R, Alves MM (2009) Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water Res 43(20):5142–5150

    Article  CAS  Google Scholar 

  • Owamah HI, Izinyon OC (2015) The effect of organic loading rates (OLRs) on the performances of food wastes and maize husks anaerobic co-digestion in continuous mode. Sustain Energy Technol Assess 11:71–76. doi:10.1016/j.seta.2015.06.002

    Article  Google Scholar 

  • Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag 34:747–752. doi:10.1016/j.wasman.2014.01.017

    Article  CAS  Google Scholar 

  • Pagliaccia P, Gallipoli A, Gianico A, Montecchio D, Braguglia CM (2016) Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int J Hydrogen Energy 41(2):905–915

    Article  CAS  Google Scholar 

  • Pan J, Zhangb R, El-Mashadb HM et al (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 33:6968–6975. doi:10.1016/j.ijhydene.2008.07.130

    Article  CAS  Google Scholar 

  • Pan J, Chen X, Sheng K, Yu Y, Zhang C, Ying Y (2013) Effect of ammonia on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 38(29):12747–12754

    Article  CAS  Google Scholar 

  • Papanikolaou S, Dimou A, Fakas S et al (2011) Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J Appl Microbiol 110:1138–1150

    Article  CAS  Google Scholar 

  • Pham TPT, Kaushik R, Parshetti GK et al (2014) Food-waste-to-energy conversion technologies: current status and future directions. Waste Manag 38:399–408. doi:10.1016/j.wasman.2014.12.004

    Article  CAS  Google Scholar 

  • Pisutpaisal N, Nathao C, Sirisukpoka U (2014) Biological hydrogen and methane production in from food waste in two-stage CSTR. Energy Procedia 50:719–722. doi:10.1016/j.egypro.2014.06.088

    Article  CAS  Google Scholar 

  • Pleissner D, Lau KY, Schneider R et al (2015) Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res Int 73:52–61. doi:10.1016/j.foodres.2014.11.048

    Article  CAS  Google Scholar 

  • Pretel R, Moñino P, Robles A et al (2016) Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste. J Environ Manage 179:83–92

    Article  CAS  Google Scholar 

  • Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Bioresour Technol 103:21–27. doi:10.1016/j.biortech.2011.09.036

    Article  CAS  Google Scholar 

  • Qiang H, Niu Q, Chi Y, Li Y (2013) Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chem Eng J 222:330–336. doi:10.1016/j.cej.2013.02.076

    Article  CAS  Google Scholar 

  • Rajagopal R, Lim JW, Mao Y et al (2013a) Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: for Singapore context. Sci Total Environ 443:877–886. doi:10.1016/j.scitotenv.2012.11.016

    Article  CAS  Google Scholar 

  • Rajagopal R, Massé DI, Singh G (2013b) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641. doi:10.1016/j.biortech.2013.06.030

    Article  CAS  Google Scholar 

  • Rama Mohan S (2016) Strategy and design of innovation policy roadmap** for a waste biorefinery. Bioresour Technol. doi:10.1016/j.biortech.2016.03.090

    Google Scholar 

  • Ranade DR, Yeole TY, Godbole SH (1987) Production of biogas from market waste. Biomass 13:147–153. doi:10.1016/0144-4565(87)90024-2

    Article  CAS  Google Scholar 

  • Rapport J, Zhang R, Jenkins BM, Williams RB (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste

  • Ratanatamskul C, Onnum G, Yamamoto K (2014) A prototype single-stage anaerobic digester for co-digestion of food waste and sewage sludge from high-rise building for on-site biogas production. Int Biodeterior Biodegrad 95:176–180

    Article  CAS  Google Scholar 

  • Ratanatamskul C, Wattanayommanaporn O, Yamamoto K (2015) An on-site prototype two-stage anaerobic digester for co-digestion of food waste and sewage sludge for biogas production from high-rise building. Int Biodeterior Biodegrad 102:143–148. doi:10.1016/j.ibiod.2015.03.019

    Article  CAS  Google Scholar 

  • Redondas V, Gómez X, García S, Pevida C, Rubiera F, Morán A, Pis JJ (2012) Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Manag 32(1):60–66

    Article  CAS  Google Scholar 

  • Redwood MD, Orozco RL, Majewski AJ, Macaskie LE (2012) An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresour Technol 119:384–392. doi:10.1016/j.biortech.2012.05.040

    Article  CAS  Google Scholar 

  • Reungsang A, Sreela-or C, Plangklang P (2013) Non-sterile bio-hydrogen fermentation from food waste in a continuous stirred tank reactor (CSTR): performance and population analysis. Int J Hydrogen Energy 38(35):15630–15637

    Article  CAS  Google Scholar 

  • Salminen E, Rintala J (2002) Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour Technol 83:13–26

    Article  CAS  Google Scholar 

  • San Martin D, Ramos S, Zufía J (2016) Valorisation of food waste to produce new raw materials for animal feed. Food Chem 198:68–74. doi:10.1016/j.foodchem.2015.11.035

    Article  CAS  Google Scholar 

  • Sawatdeenarunat C, Nguyen D, Surendra KC et al (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol. doi:10.1016/j.biortech.2016.03.074

    Google Scholar 

  • Schievano A, Tenca A, Lonati S et al (2014) Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl Energy 124:335–342. doi:10.1016/j.apenergy.2014.03.024

    Article  CAS  Google Scholar 

  • Serna-Maza A, Heaven S, Banks CJ (2014) Ammonia removal in food waste anaerobic digestion using a side-stream strip** process. Bioresour Technol 152:307–315. doi:10.1016/j.biortech.2013.10.093

    Article  CAS  Google Scholar 

  • Serna-Maza A, Heaven S, Banks CJ (2015) Biogas strip** of ammonia from fresh digestate from a food waste digester. Bioresour Technol 190:66–75. doi:10.1016/j.biortech.2015.04.041

    Article  CAS  Google Scholar 

  • Shahriari H, Warith M, Hamoda M, Kennedy K (2013) Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. J Environ Manage 125:74–84. doi:10.1016/j.jenvman.2013.03.042

    Article  CAS  Google Scholar 

  • Shen F, Yuan H, Pang Y et al (2013) Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresour Technol 144:80–85. doi:10.1016/j.biortech.2013.06.099

    Article  CAS  Google Scholar 

  • Shen D, Wang K, Yin J et al (2016) Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste. Waste Manag. doi:10.1016/j.wasman.2016.02.027

    Google Scholar 

  • Sheng K, Chen X, Pan J et al (2013) Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosyst Eng 116:205–212. doi:10.1016/j.biosystemseng.2013.08.005

    Article  Google Scholar 

  • Spanish Ministry of Agriculture Food and the Environment (2013) Spanish strategy: “More food, less waste” program to reduce food loss and waste and maximise the value of discarded food

  • Sreela-or C, Imai T, Plangklang P, Reungsang A (2011a) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrogen Energy 36:14120–14133. doi:10.1016/j.ijhydene.2011.04.136

    Article  CAS  Google Scholar 

  • Sreela-or C, Plangklang P, Imai T, Reungsang A (2011b) Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization. Int J Hydrogen Energy 36:14227–14237. doi:10.1016/j.ijhydene.2011.05.145

    Article  CAS  Google Scholar 

  • Tampio E, Ervasti S, Paavola T et al (2014) Anaerobic digestion of autoclaved and untreated food waste. Waste Manag 34:370–377. doi:10.1016/j.wasman.2013.10.024

    Article  CAS  Google Scholar 

  • Thauvin P, Vernier A (2013) Réduire, trier et valoriser les biodéchets des gros producteurs. ADEME, Agence del’Environnement et de la Maîtrise de l’Energie

  • Tuck CO, Pérez E, Horváth IT et al (2012) Valorization of biomass: deriving more value from waste. Science 337(80):695–699

  • Uçkun Kiran E, Liu Y (2015) Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 159:463–469. doi:10.1016/j.fuel.2015.06.101

    Article  CAS  Google Scholar 

  • Uçkun Kiran E, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. doi:10.1016/j.fuel.2014.05.074

    Article  CAS  Google Scholar 

  • United Nations (2011) World population prospects: the 2010 revision, volume I: Comprehensive tables

  • Valdez-Vazquez I, Poggi-Varaldo HM (2009) Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. Int J Hydrogen Energy 34(9):3639–3646

    Article  CAS  Google Scholar 

  • VALORGAS (2010) D2.1: compositional analysis of food waste from study sites in geographically distinct regions of Europe

  • Venkata SM, Nikhil GN, Chiranjeevi P et al (2016) Waste biorefinery models towards sustainable bioeconomy: critical review and future perspectives. Bioresour Technol. doi:10.1016/j.biortech.2016.03.130

    Google Scholar 

  • Ventura J-RS, Lee J, Jahng D (2014) A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste. J Environ Sci 26:1274–1283. doi:10.1016/S1001-0742(13)60599-9

    Article  CAS  Google Scholar 

  • Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627

    Article  CAS  Google Scholar 

  • Wang X, Zhao Y (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34:245–254. doi:10.1016/j.ijhydene.2008.09.100

    Article  CAS  Google Scholar 

  • Wang L-H, Wang Q, Cai W, Sun X (2012) Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller’s grains and food waste. Biosyst Eng 112:130–137. doi:10.1016/j.biosystemseng.2012.03.006

    Article  Google Scholar 

  • Wang K, Yin J, Shen D, Li N (2014a) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol 161:395–401. doi:10.1016/j.biortech.2014.03.088

    Article  CAS  Google Scholar 

  • Wang M, Sun X, Li P et al (2014b) A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure. Bioresour Technol 164:309–314. doi:10.1016/j.biortech.2014.04.077

    Article  CAS  Google Scholar 

  • Wang Q, Jiang J, Zhang Y, Li K (2015) Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification. Environ Technol 36:1884–1891. doi:10.1080/09593330.2015.1015454

    Article  CAS  Google Scholar 

  • Wei Q, Zhang W, Guo J et al (2014) Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability. Chemosphere 117:477–485. doi:10.1016/j.chemosphere.2014.08.060

    Article  CAS  Google Scholar 

  • Wen Z, Wang Y, De Clercq D (2016) What is the true value of food waste? A case study of technology integration in urban food waste treatment in Suzhou City, China. J Clean Prod 118:88–96. doi:10.1016/j.jclepro.2015.12.087

    Article  Google Scholar 

  • Woon KS, Lo IMC (2015) A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong. Waste Manag 47:3–10. doi:10.1016/j.wasman.2015.03.022

    Article  Google Scholar 

  • Wu L-J, Kobayashi T, Li Y-Y, Xu K-Q (2015a) Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Convers Manag 106:1174–1182. doi:10.1016/j.enconman.2015.10.059

    Article  CAS  Google Scholar 

  • Wu Y, Ma H, Zheng M, Wang K (2015b) Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour Technol 191:53–58. doi:10.1016/j.biortech.2015.04.100

    Article  CAS  Google Scholar 

  • Xu SY, Lam HP, Karthikeyan OP, Wong JWC (2011) Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent. Bioresour Technol 102:3702–3708. doi:10.1016/j.biortech.2010.11.095

    Article  CAS  Google Scholar 

  • Xu SY, Karthikeyan OP, Selvam A, Wong JWC (2012) Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresour Technol 126:425–430

    Article  CAS  Google Scholar 

  • Xu C, Shi W, Hong J et al (2015) Life cycle assessment of food waste-based biogas generation. Renew Sustain Energy Rev 49:169–177. doi:10.1016/j.rser.2015.04.164

    Article  CAS  Google Scholar 

  • Yabu H, Sakai C, Fujiwara T et al (2011) Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia strip**. J Biosci Bioeng 111:312–319. doi:10.1016/j.jbiosc.2010.10.011

    Article  CAS  Google Scholar 

  • Yan BH, Selvam A, Wong JWC (2016) Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor. Bioresour Technol. doi:10.1016/j.biortech.2016.03.116

    Google Scholar 

  • Yang L, Huang Y, Zhao M et al (2015) Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int Biodeterior Biodegrad 105:153–159. doi:10.1016/j.ibiod.2015.09.005

    Article  CAS  Google Scholar 

  • Yasin NHM, Mumtaz T, Hassan MA, Abd Rahman N (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385. doi:10.1016/j.jenvman.2013.09.009

    Article  CAS  Google Scholar 

  • Ye J, Li D, Sun Y et al (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33:2653–2658. doi:10.1016/j.wasman.2013.05.014

    Article  CAS  Google Scholar 

  • Yin J, Wang K, Yang Y et al (2014) Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresour Technol 171:323–329. doi:10.1016/j.biortech.2014.08.062

    Article  CAS  Google Scholar 

  • Yirong C, Banks CJ, Heaven S (2013) Comparison of mesophilic and thermophilic anaerobic digestion of food waste. In: IWA (ed) AD13 Recovering (bio) resources for the world. Santiago de Compostela

  • Yirong C, Heaven S, Banks CJ (2015) Effect of a trace element addition strategy on volatile fatty acid accumulation in thermophilic anaerobic digestion of food waste. Waste Biomass Valoriz 6:1–12. doi:10.1007/s12649-014-9327-2

    Article  CAS  Google Scholar 

  • Zamanzadeh M, Hagen LH, Svensson K et al (2016) Anaerobic digestion of food waste—effect of recirculation and temperature on performance and microbiology. Water Res. doi:10.1016/j.watres.2016.03.058

    Google Scholar 

  • Zeng Y, De Guardia A, Dabert P (2015) Improving composting as a post-treatment of anaerobic digestate. Bioresour Technol 201:293–303. doi:10.1016/j.biortech.2015.11.013

    Article  CAS  Google Scholar 

  • Zhang L, Jahng D (2012) Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manag 32:1509–1515. doi:10.1016/j.wasman.2012.03.015

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q (2013) Buffering and nutrient effects of white mud from ammonia–soda process on thermophilic hydrogen fermentation from food waste. Int J Hydrogen Energy 38:13564–13571. doi:10.1016/j.ijhydene.2013.08.047

    Article  CAS  Google Scholar 

  • Zhang B, Cai W, He P (2007a) Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J Environ Sci 19:244–249. doi:10.1016/S1001-0742(07)60040-0

    Article  Google Scholar 

  • Zhang R, El-Mashad HM, Hartman K et al (2007b) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935. doi:10.1016/j.biortech.2006.02.039

    Article  CAS  Google Scholar 

  • Zhang L, Lee Y-W, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102:5048–5059. doi:10.1016/j.biortech.2011.01.082

    Article  CAS  Google Scholar 

  • Zhang L, Ouyang W, Lia A (2012a) Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environ Sci 16:102–111. doi:10.1016/j.proenv.2012.10.014

    Article  CAS  Google Scholar 

  • Zhang Y, Banks CJ, Heaven S (2012b) Anaerobic digestion of two biodegradable municipal waste streams. J Environ Manage 104:166–174. doi:10.1016/j.jenvman.2012.03.043

    Article  CAS  Google Scholar 

  • Zhang Y, Banks CJ, Heaven S (2012c) Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol 114:168–178. doi:10.1016/j.biortech.2012.03.040

    Article  CAS  Google Scholar 

  • Zhang C, Su H, Tan T (2013a) Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresour Technol 145:10–16. doi:10.1016/j.biortech.2013.03.030

    Article  CAS  Google Scholar 

  • Zhang C, **ao G, Peng L et al (2013b) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176. doi:10.1016/j.biortech.2012.10.138

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q, Jiang J (2013c) Lime mud from paper-making process addition to food waste synergistically enhances hydrogen fermentation performance. Int J Hydrogen Energy 38:2738–2745. doi:10.1016/j.ijhydene.2012.12.048

    Article  CAS  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392. doi:10.1016/j.rser.2014.05.038

    Article  CAS  Google Scholar 

  • Zhang W, Wu S, Guo J et al (2015a) Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: role of trace elements. Bioresour Technol 178:297–305. doi:10.1016/j.biortech.2014.08.046

    Article  CAS  Google Scholar 

  • Zhang W, Zhang L, Li A (2015b) Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res 84:266–277. doi:10.1016/j.watres.2015.07.010

    Article  CAS  Google Scholar 

  • Zhang W, Zhang L, Li A (2015c) Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects. Chem Eng J 259:795–805. doi:10.1016/j.cej.2014.08.039

    Article  CAS  Google Scholar 

  • Zhang J, Lv C, Tong J, Liu J, Liu J, Yu D, Wang Y, Chen M, Wei Y (2016) Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour Technol 200:253–261

    Article  CAS  Google Scholar 

  • Zhan-jiang P, Jie L, Feng-mei S et al (2014) High-solid anaerobic co-digestion of food waste and rice straw for biogas production. J Northeast Agric Univ (English Ed 21:61–66. doi:10.1016/S1006-8104(15)30021-0

  • Zhou Y, Zhang Z, Nakamoto T et al (2011) Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass Bioenergy 35:3251–3256. doi:10.1016/j.biombioe.2011.04.002

    Article  CAS  Google Scholar 

  • Zhou P, Elbeshbishy E, Nakhla G (2013) Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresour Technol 130:710–718. doi:10.1016/j.biortech.2012.12.069

    Article  CAS  Google Scholar 

  • Zhou Q, Shen F, Yuan H, Zou D, Liu Y, Zhu B, Jaffu M, Chufo A, Li X (2014) Minimizing asynchronism to improve the performances of anaerobic co-digestion of food waste and corn stover. Bioresour Technol 166:31–36

    Article  CAS  Google Scholar 

  • Zhu H, Parker W, Basnar R et al (2009) Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresour Technol 100:5097–5102. doi:10.1016/j.biortech.2009.02.066

    Article  CAS  Google Scholar 

  • Zhu H, Parker W, Conidi D et al (2011) Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge. Bioresour Technol 102:7086–7092. doi:10.1016/j.biortech.2011.04.047

    Article  CAS  Google Scholar 

  • Zong W, Yu R, Zhang P et al (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463. doi:10.1016/j.biombioe.2009.06.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been financed by Suez and by the National Institute of Agronomic Research (INRA) under the CIFRE convention No. 2014/1146. Both are gratefully acknowledged. The authors also wish to thank the Communauté d’Agglomération du Grand Narbonne (CAGN) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Escudié.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capson-Tojo, G., Rouez, M., Crest, M. et al. Food waste valorization via anaerobic processes: a review. Rev Environ Sci Biotechnol 15, 499–547 (2016). https://doi.org/10.1007/s11157-016-9405-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9405-y

Keywords

Navigation