Log in

Diagnosing and treating the elderly individual with hypopituitarism

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Hypopituitarism in the elderly is an underestimated condition mainly due to the non-specific presentation that can be attributed to the effects of aging and the presence of comorbidities. Diagnosis and treatment of hypopituitarism often represent a challenging task and this is even more significant in the elderly. Diagnosis can be insidious due to the physiological changes occurring with aging that complicate the interpretation of hormonal investigations, and the need to avoid some provocative tests that carry higher risks of side effects in this population. Treatment of hypopituitarism has generally the goal to replace the hormonal deficiencies to restore a physiological balance as close as possible to that of healthy individuals but in the elderly this must be balanced with the risks of over-replacement and worsening of comorbidities. Moreover, the benefit of some hormonal replacement therapies in the elderly, including sex hormones and growth hormone, remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Regal M, Páramo C, Sierra SM, Garcia-Mayor RV. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf). 2001;55(6):735–40. https://doi.org/10.1046/j.1365-2265.2001.01406.x.

    Article  CAS  PubMed  Google Scholar 

  2. Pappachan JM, Raskauskiene D, Kutty VR, Clayton RN. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J Clin Endocrinol Metab. 2015;100(4):1405–11. https://doi.org/10.1210/jc.2014-3787.

    Article  CAS  PubMed  Google Scholar 

  3. Singh S, Bajorek B. Defining “elderly” in clinical practice guidelines for pharmacotherapy. Pharm Pract (Granada). 2014;12(4):489. https://doi.org/10.4321/s1886-36552014000400007.

    Article  PubMed  Google Scholar 

  4. Tanriverdi F, Dokmetas HS, Kebapcı N, Kilicli F, Atmaca H, Yarman S, Ertorer ME, Erturk E, Bayram F, Tugrul A, Culha C, Cakir M, Mert M, Aydin H, Taskale M, Ersoz N, Canturk Z, Anaforoglu I, Ozkaya M, Oruk G, Hekimsoy Z, Kelestimur F, Erbas T. Etiology of hypopituitarism in tertiary care institutions in Turkish population: analysis of 773 patients from Pituitary Study Group database. Endocrine. 2014;47(1):198–205. https://doi.org/10.1007/s12020-013-0127-4.

    Article  CAS  PubMed  Google Scholar 

  5. Karaca Z, Laway BA, Dokmetas HS, Atmaca H, Kelestimur F. Sheehan syndrome Nat Rev Dis Primers. 2016;2:16092. https://doi.org/10.1038/nrdp.2016.92.

    Article  PubMed  Google Scholar 

  6. Villar-Taibo R, Díaz-Ortega C, Sifontes-Dubon M, Fernández-Pombo A, Serramito-García R, Martínez-Capoccioni G, Bernabeu I. Pituitary surgery in elderly patients: a safe and effective procedure. Endocrine. 2021;72(3):814–22. https://doi.org/10.1007/s12020-021-02665-6.

    Article  CAS  PubMed  Google Scholar 

  7. Nomikos P, Ladar C, Fahlbusch R, Buchfelder M. Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas – a study on 721 patients. Acta Neurochir (Wien). 2004;146(1):27–35. https://doi.org/10.1007/s00701-003-0174-3.

    Article  CAS  PubMed  Google Scholar 

  8. Jahangiri A, Wagner JR, Han SW, Tran MT, Miller LM, Chen R, Tom MW, Ostling LR, Kunwar S, Blevins L, Aghi MK. Improved versus worsened endocrine function after transsphenoidal surgery for nonfunctional pituitary adenomas: rate, time course, and radiological analysis. J Neurosurg. 2016;124(3):589–95. https://doi.org/10.3171/2015.1.Jns141543.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen-Inbar O, Ramesh A, Xu Z, Vance ML, Schlesinger D, Sheehan JP. Gamma knife radiosurgery in patients with persistent acromegaly or Cushing’s disease: long-term risk of hypopituitarism. Clin Endocrinol (Oxf). 2016;84(4):524–31. https://doi.org/10.1111/cen.12938.

    Article  PubMed  Google Scholar 

  10. Klose M, Juul A, Struck J, Morgenthaler NG, Kosteljanetz M, Feldt-Rasmussen U. Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study. Clin Endocrinol (Oxf). 2007;67(4):598–606. https://doi.org/10.1111/j.1365-2265.2007.02931.x.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider HJ, Schneider M, Saller B, Petersenn S, Uhr M, Husemann B, von Rosen F, Stalla GK. Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur J Endocrinol. 2006;154(2):259–65. https://doi.org/10.1530/eje.1.02071.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298(12):1429–38. https://doi.org/10.1001/jama.298.12.1429.

    Article  CAS  PubMed  Google Scholar 

  13. Bondanelli M, Ambrosio MR, Carli A, Bergonzoni A, Bertocchi A, Zatelli MC, Ceruti S, Valle D, Basaglia N, degli Uberti EC. Predictors of pituitary dysfunction in patients surviving ischemic stroke. J Clin Endocrinol Metab. 2010;95(10):4660–8. https://doi.org/10.1210/jc.2010-0611.

    Article  CAS  PubMed  Google Scholar 

  14. Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev. 2015;36(3):305–42. https://doi.org/10.1210/er.2014-1065.

    Article  CAS  PubMed  Google Scholar 

  15. Torino F, Corsello SM, Salvatori R. Endocrinological side-effects of immune checkpoint inhibitors. Curr Opin Oncol. 2016;28(4):278–87. https://doi.org/10.1097/cco.0000000000000293.

    Article  CAS  PubMed  Google Scholar 

  16. Caturegli P, Di Dalmazi G, Lombardi M, Grosso F, Larman HB, Larman T, Taverna G, Cosottini M, Lupi I. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: Insights into pathogenesis from an autopsy series. Am J Pathol. 2016;186(12):3225–35. https://doi.org/10.1016/j.ajpath.2016.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barnabei A, Strigari L, Corsello A, Paragliola RM, Falzone L, Salvatori R, Corsello SM, Torino F. Immune checkpoint inhibitor-induced central diabetes insipidus: Looking for the needle in the haystack or a very rare side-effect to promptly diagnose? Front Oncol. 2022;12:798517. https://doi.org/10.3389/fonc.2022.798517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Türe U, De Bellis A, Harput MV, Bellastella G, Topcuoglu M, Yaltirik CK, Cirillo P, Yola RN, Sav A, Kelestimur F. Hypothalamitis: a novel autoimmune endocrine disease. A literature review and case report. J Clin Endocrinol Metabol. 2020;106(2):e415–29. https://doi.org/10.1210/clinem/dgaa771.

    Article  Google Scholar 

  19. Biondi B. The normal TSH reference range: What has changed in the last decade? J Clin Endocrinol Metab. 2013;98(9):3584–7. https://doi.org/10.1210/jc.2013-2760.

    Article  CAS  PubMed  Google Scholar 

  20. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99. https://doi.org/10.1210/jcem.87.2.8182.

    Article  CAS  PubMed  Google Scholar 

  21. Kahapola-Arachchige KM, Hadlow N, Wardrop R, Lim EM, Walsh JP. Age-specific TSH reference ranges have minimal impact on the diagnosis of thyroid dysfunction. Clin Endocrinol (Oxf). 2012;77(5):773–9. https://doi.org/10.1111/j.1365-2265.2012.04463.x.

    Article  CAS  PubMed  Google Scholar 

  22. Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53. https://doi.org/10.1210/jc.2012-3191.

    Article  CAS  PubMed  Google Scholar 

  23. Corsonello A, Montesanto A, Berardelli M, De Rango F, Dato S, Mari V, Mazzei B, Lattanzio F, Passarino G. A cross-section analysis of FT3 age-related changes in a group of old and oldest-old subjects, including centenarians’ relatives, shows that a down-regulated thyroid function has a familial component and is related to longevity. Age Ageing. 2010;39(6):723–7. https://doi.org/10.1093/ageing/afq116.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Donda A, Lemarchand-Beraud T. Aging alters the activity of 5’-deiodinase in the adenohypophysis, thyroid gland, and liver of the male rat. Endocrinology. 1989;124(3):1305–9. https://doi.org/10.1210/endo-124-3-1305.

    Article  CAS  PubMed  Google Scholar 

  25. Bremner AP, Feddema P, Leedman PJ, Brown SJ, Beilby JP, Lim EM, Wilson SG, O’Leary PC, Walsh JP. Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab. 2012;97(5):1554–62. https://doi.org/10.1210/jc.2011-3020.

    Article  CAS  PubMed  Google Scholar 

  26. Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, Samuels MH. Hormonal Replacement in Hypopituitarism in Adults: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(11):3888–921. https://doi.org/10.1210/jc.2016-2118.

    Article  CAS  PubMed  Google Scholar 

  27. Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793–800. https://doi.org/10.1016/j.beem.2009.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathioudakis N, Thapa S, Wand GS, Salvatori R. ACTH-secreting pituitary microadenomas are associated with a higher prevalence of central hypothyroidism compared to other microadenoma types. Clin Endocrinol (Oxf). 2012;77(6):871–6. https://doi.org/10.1111/j.1365-2265.2012.04442.x.

    Article  CAS  PubMed  Google Scholar 

  29. Paragliola RM, Corsello A, Papi G, Pontecorvi A, Corsello SM. Cushing’s syndrome effects on the thyroid. Int J Mol Sci. 2021;22(6). https://doi.org/10.3390/ijms22063131.

  30. Paragliola RM, Prete A, Kaplan PW, Corsello SM, Salvatori R. Treatment of hypopituitarism in patients receiving antiepileptic drugs. Lancet Diabetes Endocrinol. 2015;3(2):132–40. https://doi.org/10.1016/s2213-8587(14)70081-6.

    Article  CAS  PubMed  Google Scholar 

  31. Cannarella R, Condorelli RA, Barbagallo F, Aversa A, Calogero AE, La Vignera S. TSH lowering effects of metformin: a possible mechanism of action. J Endocrinol Invest. 2021;44(7):1547–50. https://doi.org/10.1007/s40618-020-01445-9.

    Article  CAS  PubMed  Google Scholar 

  32. Utiger RD. Altered Thyroid Function in Nonthyroidal Illness and Surgery — To Treat or Not to Treat? N Engl J Med. 1995;333(23):1562–3. https://doi.org/10.1056/nejm199512073332310.

    Article  CAS  PubMed  Google Scholar 

  33. Atmaca H, Tanriverdi F, Gokce C, Unluhizarci K, Kelestimur F. Do we still need the TRH stimulation test? Thyroid. 2007;17(6):529–33. https://doi.org/10.1089/thy.2006.0311.

    Article  CAS  PubMed  Google Scholar 

  34. Grunenwald S, Caron P. Central hypothyroidism in adults: better understanding for better care. Pituitary. 2015;18(1):169–75. https://doi.org/10.1007/s11102-014-0559-8.

    Article  CAS  PubMed  Google Scholar 

  35. Roos A, Linn-Rasker SP, van Domburg RT, Tijssen JP, Berghout A. The starting dose of levothyroxine in primary hypothyroidism treatment: a prospective, randomized, double-blind trial. Arch Intern Med. 2005;165(15):1714–20. https://doi.org/10.1001/archinte.165.15.1714.

    Article  CAS  PubMed  Google Scholar 

  36. Effraimidis G, Watt T, Feldt-Rasmussen U. Levothyroxine therapy in elderly patients with hypothyroidism. Front Endocrinol (Lausanne). 2021;12:641560. https://doi.org/10.3389/fendo.2021.641560.

    Article  PubMed  Google Scholar 

  37. Ferretti E, Persani L, Jaffrain-Rea ML, Giambona S, Tamburrano G, Beck-Peccoz P. Evaluation of the adequacy of levothyroxine replacement therapy in patients with central hypothyroidism. J Clin Endocrinol Metab. 1999;84(3):924–9. https://doi.org/10.1210/jcem.84.3.5553.

    Article  CAS  PubMed  Google Scholar 

  38. Cappelli C, Pirola I, Daffini L, Gandossi E, Agosti B, Castellano M. Thyroid hormonal profile in elderly patients treated with two different levothyroxine formulations: A single institute survey. Eur Geriatr Med. 2014;5(6):382–5. https://doi.org/10.1016/j.eurger.2014.09.006.

    Article  Google Scholar 

  39. Mazziotti G, Mormando M, Cristiano A, Bianchi A, Porcelli T, Giampietro A, Maffezzoni F, Serra V, De Marinis L, Giustina A. Association between l-thyroxine treatment, GH deficiency, and radiological vertebral fractures in patients with adult-onset hypopituitarism. Eur J Endocrinol. 2014;170(6):893–9. https://doi.org/10.1530/eje-14-0097.

    Article  CAS  PubMed  Google Scholar 

  40. Chaker L, Razvi S, Bensenor IM, Azizi F, Pearce EN, Peeters RP. Hypothyroidism. Nat Rev Dis Primers. 2022;8(1):30. https://doi.org/10.1038/s41572-022-00357-7.

    Article  PubMed  Google Scholar 

  41. Evron JM, Hummel SL, Reyes-Gastelum D, Haymart MR, Banerjee M, Papaleontiou M. Association of thyroid hormone treatment intensity with cardiovascular mortality among US veterans. JAMA Netw Open. 2022;5(5):e2211863–e2211863. https://doi.org/10.1001/jamanetworkopen.2022.11863.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liyanarachchi K, Ross R, Debono M. Human studies on hypothalamo-pituitary-adrenal (HPA) axis. Best Pract Res Clin Endocrinol Metab. 2017;31(5):459–73. https://doi.org/10.1016/j.beem.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  43. Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–14. https://doi.org/10.1210/jc.2004-1056.

    Article  CAS  PubMed  Google Scholar 

  44. Ferrari E, Cravello L, Muzzoni B, Casarotti D, Paltro M, Solerte SB, Fioravanti M, Cuzzoni G, Pontiggia B, Magri F. Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. Eur J Endocrinol. 2001;144(4):319–29. https://doi.org/10.1530/eje.0.1440319.

    Article  CAS  PubMed  Google Scholar 

  45. Caputo M, Mele C, Ferrero A, Leone I, Daffara T, Marzullo P, Prodam F, Aimaretti G. Dynamic tests in pituitary endocrinology: Pitfalls in interpretation during aging. Neuroendocrinology. 2022;112(1):1–14. https://doi.org/10.1159/000514434.

    Article  CAS  PubMed  Google Scholar 

  46. Giordano R, Bo M, Pellegrino M, Vezzari M, Baldi M, Picu A, Balbo M, Bonelli L, Migliaretti G, Ghigo E, Arvat E. Hypothalamus-pituitary-adrenal hyperactivity in human aging is partially refractory to stimulation by mineralocorticoid receptor blockade. J Clin Endocrinol Metab. 2005;90(10):5656–62. https://doi.org/10.1210/jc.2005-0105.

    Article  CAS  PubMed  Google Scholar 

  47. Hek K, Direk N, Newson RS, Hofman A, Hoogendijk WJ, Mulder CL, Tiemeier H. Anxiety disorders and salivary cortisol levels in older adults: a population-based study. Psychoneuroendocrinology. 2013;38(2):300–5. https://doi.org/10.1016/j.psyneuen.2012.06.006.

    Article  CAS  PubMed  Google Scholar 

  48. Prete A, Bancos I. Glucocorticoid induced adrenal insufficiency. BMJ (Clin Res Ed). 2021;374:n1380. https://doi.org/10.1136/bmj.n1380.

    Article  Google Scholar 

  49. Gadelha MR, Karavitaki N, Fudin J, Bettinger JJ, Raff H, Ben-Shlomo A. Opioids and pituitary function: expert opinion. Pituitary. 2022;25(1):52–63. https://doi.org/10.1007/s11102-021-01202-y.

    Article  PubMed  Google Scholar 

  50. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol. 2008;92(11):1439–44. https://doi.org/10.1136/bjo.2008.141747.

    Article  CAS  PubMed  Google Scholar 

  51. Johar H, Emeny RT, Bidlingmaier M, Reincke M, Thorand B, Peters A, Heier M, Ladwig KH. Blunted diurnal cortisol pattern is associated with frailty: a cross-sectional study of 745 participants aged 65 to 90 years. J Clin Endocrinol Metab. 2014;99(3):E464–468. https://doi.org/10.1210/jc.2013-3079.

    Article  CAS  PubMed  Google Scholar 

  52. Noordam R, Jansen SW, Akintola AA, Oei NY, Maier AB, Pijl H, Slagboom PE, Westendorp RG, van der Grond J, de Craen AJ, van Heemst D, Leiden Longevity Study group. Familial longevity is marked by lower diurnal salivary cortisol levels: the Leiden Longevity Study. PloS One. 2012;7(2):e31166. https://doi.org/10.1371/journal.pone.0031166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ceccato F, Scaroni C. Central adrenal insufficiency: open issues regarding diagnosis and glucocorticoid treatment. Clin Chem Lab Med. 2019;57(8):1125–35. https://doi.org/10.1515/cclm-2018-0824.

    Article  CAS  PubMed  Google Scholar 

  54. Webb SM, Rigla M, Wagner A, Oliver B, Bartumeus F. Recovery of hypopituitarism after neurosurgical treatment of pituitary adenomas. J Clin Endocrinol Metab. 1999;84(10):3696–700. https://doi.org/10.1210/jcem.84.10.6019.

    Article  CAS  PubMed  Google Scholar 

  55. Darzy KH. Radiation-induced hypopituitarism. Curr Opin Endocrinol Diabetes Obes. 2013;20(4):342–53. https://doi.org/10.1097/MED.0b013e3283631820.

    Article  CAS  PubMed  Google Scholar 

  56. Minniti G, Traish D, Ashley S, Gonsalves A, Brada M. Fractionated stereotactic conformal radiotherapy for secreting and nonsecreting pituitary adenomas. Clin Endocrinol (Oxf). 2006;64(5):542–8. https://doi.org/10.1111/j.1365-2265.2006.02506.x.

    Article  CAS  PubMed  Google Scholar 

  57. Faje AT, Sullivan R, Lawrence D, Tritos NA, Fadden R, Klibanski A, Nachtigall L. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99(11):4078–85. https://doi.org/10.1210/jc.2014-2306.

    Article  CAS  PubMed  Google Scholar 

  58. Levy M, Abeillon J, Dalle S, Assaad S, Borson-Chazot F, Disse E, Raverot G, Cugnet-Anceau C. Anti-PD1 and Anti-PDL1-induced hypophysitis: a cohort study of 17 patients with longitudinal follow-up. J Clin Med. 2020;9(10). https://doi.org/10.3390/jcm9103280.

  59. Chanson P. Severe hyponatremia as a frequent revealing sign of hypopituitarism after 60 years of age. Eur J Endocrinol. 2003;149(3):177–8. https://doi.org/10.1530/eje.0.1490177.

    Article  CAS  PubMed  Google Scholar 

  60. Pazderska A, Pearce SH. Adrenal insufficiency - recognition and management. Clin Med (Lond). 2017;17(3):258–62. https://doi.org/10.7861/clinmedicine.17-3-258.

    Article  PubMed  Google Scholar 

  61. Paragliola RM, Papi G, Pontecorvi A, Corsello SM. Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-adrenal axis. Int J Mol Sci. 2017;18(10). https://doi.org/10.3390/ijms18102201.

  62. van Staa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C. Use of oral corticosteroids in the United Kingdom. QJM: Mon J Assoc Phys. 2000;93(2):105–11. https://doi.org/10.1093/qjmed/93.2.105.

    Article  Google Scholar 

  63. Smans LC, Van der Valk ES, Hermus AR, Zelissen PM. Incidence of adrenal crisis in patients with adrenal insufficiency. Clin Endocrinol (Oxf). 2016;84(1):17–22. https://doi.org/10.1111/cen.12865.

    Article  CAS  PubMed  Google Scholar 

  64. Langouche L, Teblick A, Gunst J, Van den Berghe G. The Hypothalamus-Pituitary-Adrenocortical response to critical illness: a concept in need of revision. Endocr Rev. 2023. https://doi.org/10.1210/endrev/bnad021.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, Vanwijngaerden YM, Spriet I, Wouters PJ, Vander Perre S, Langouche L, Vanhorebeek I, Walker BR, Van den Berghe G. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477–88. https://doi.org/10.1056/NEJMoa1214969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000;283(8):1038–45. https://doi.org/10.1001/jama.283.8.1038.

    Article  CAS  PubMed  Google Scholar 

  67. Vermes I, Beishuizen A, Hampsink RM, Haanen C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab. 1995;80(4):1238–42. https://doi.org/10.1210/jcem.80.4.7714094.

    Article  CAS  PubMed  Google Scholar 

  68. Reddy P. Clinical approach to adrenal insufficiency in hospitalised patients. Int J Clin Pract. 2011;65(10):1059–66. https://doi.org/10.1111/j.1742-1241.2011.02718.x.

    Article  CAS  PubMed  Google Scholar 

  69. Karagiannis AK, Nakouti T, Pipili C, Cholongitas E. Adrenal insufficiency in patients with decompensated cirrhosis. World J Hepatol. 2015;7(8):1112–24. https://doi.org/10.4254/wjh.v7.i8.1112.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Javorsky BR, Raff H, Carroll TB, Algeciras-Schimnich A, Singh RJ, Colon-Franco JM, Findling JW. New cutoffs for the biochemical diagnosis of adrenal insufficiency after ACTH stimulation using specific cortisol assays. J Endocr Soc. 2021;5(4):bvab022. https://doi.org/10.1210/jendso/bvab022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Husni H, Abusamaan MS, Dinparastisaleh R, Sokoll L, Salvatori R, Hamrahian AH. Cortisol values during the standard-dose cosyntropin stimulation test: Personal experience with Elecsys cortisol II assay. Front Endocrinol (Lausanne). 2022;13:978238. https://doi.org/10.3389/fendo.2022.978238.

    Article  PubMed  Google Scholar 

  72. Wade M, Baid S, Calis K, Raff H, Sinaii N, Nieman L. Technical details influence the diagnostic accuracy of the 1 microg ACTH stimulation test. Eur J Endocrinol. 2010;162(1):109–13. https://doi.org/10.1530/EJE-09-0746.

    Article  CAS  PubMed  Google Scholar 

  73. Papierska L, Rabijewski M, Migda B, Leszczyńska D, Nowak K, Łebek-Szatańska A, Glinicki P, Zgliczyński W. Evaluation of plasma ACTH in the metyrapone test is insufficient for the diagnosis of secondary adrenal insufficiency. Front Endocrinol (Lausanne). 2022;13:1004129. https://doi.org/10.3389/fendo.2022.1004129.

    Article  PubMed  Google Scholar 

  74. Prencipe N, Marinelli L, Varaldo E, Cuboni D, Berton AM, Bioletto F, Bona C, Gasco V, Grottoli S. Isolated anterior pituitary dysfunction in adulthood. Front Endocrinol (Lausanne). 2023;14:1100007. https://doi.org/10.3389/fendo.2023.1100007.

    Article  PubMed  Google Scholar 

  75. Kraan GPB. The daily cortisol production reinvestigated in healthy men. The serum and urinary cortisol production rates are not significantly different. J Clin Endocrinol Metabol. 1998;83(4):1247–52. https://doi.org/10.1210/jc.83.4.1247.

    Article  CAS  Google Scholar 

  76. Morgan SA, Berryman DE, List EO, Lavery GG, Stewart PM, Kopchick JJ. Regulation of 11beta-HSD1 by GH/IGF-1 in key metabolic tissues may contribute to metabolic disease in GH deficient patients. Growth Horm IGF Res. 2022;62:101440. https://doi.org/10.1016/j.ghir.2021.101440.

    Article  CAS  PubMed  Google Scholar 

  77. Hassan-Smith Z, Morgan S, Sherlock M, Bujalska I, Tomlinson J, Lavery G, Stewart P. 11β-hydroxysteroid dehydrogenase type 1 and age-associated muscle weakness in mice: implications for human ageing. Lancet. 2014;383. https://doi.org/10.1016/s0140-6736(14)60316-0.

  78. Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, Husebye ES, Merke DP, Murad MH, Stratakis CA, Torpy DJ. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89. https://doi.org/10.1210/jc.2015-1710.

    Article  CAS  PubMed  Google Scholar 

  79. Gasco V, Giannelli J, Campioni L, Arvat E, Ghigo E, Grottoli S, Maccario M, Giordano R. Benefits of dual-release hydrocortisone treatment on central adiposity and health-related quality of life in secondary adrenal insufficiency. J Endocrinol Invest. 2022. https://doi.org/10.1007/s40618-022-01940-1.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chan S, Debono M. Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab. 2010;1(3):129–38. https://doi.org/10.1177/2042018810380214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alexandraki KI, Grossman A. Management of hypopituitarism. J. Clin Med. 2019;8(12). https://doi.org/10.3390/jcm8122153.

  82. Rushworth RL, Torpy DJ, Falhammar H. Adrenal crises in older patients. Lancet Diabetes Endocrinol. 2020;8(7):628–39. https://doi.org/10.1016/S2213-8587(20)30122-4.

    Article  PubMed  Google Scholar 

  83. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98. https://doi.org/10.1210/jcem.87.2.8201.

    Article  CAS  PubMed  Google Scholar 

  84. Tenover JS, Matsumoto AM, Plymate SR, Bremner WJ. The effects of aging in normal men on bioavailable testosterone and luteinizing hormone secretion: response to clomiphene citrate. J Clin Endocrinol Metab. 1987;65(6):1118–26. https://doi.org/10.1210/jcem-65-6-1118.

    Article  CAS  PubMed  Google Scholar 

  85. Veldhuis JD. Aging and hormones of the hypothalamo-pituitary axis: gonadotropic axis in men and somatotropic axes in men and women. Ageing Res Rev. 2008;7(3):189–208. https://doi.org/10.1016/j.arr.2007.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu PY, Iranmanesh A, Nehra AX, Keenan DM, Veldhuis JD. Mechanisms of hypoandrogenemia in healthy aging men. Endocrinol Metabol Clin North Am. 2005;34(4):935–55, ix. https://doi.org/10.1016/j.ecl.2005.07.008.

  87. Xu P, Zeng R, Wan Q, **e Y, Liu X, An S, Jiang J, Yang J, Zhou Y, Shen X. Aging-related increases in serum sex hormone-binding globulin levels in men might be related to increased synthesis. Exp Gerontol. 2023;179:112249. https://doi.org/10.1016/j.exger.2023.112249.

    Article  CAS  PubMed  Google Scholar 

  88. Wang C, Nieschlag E, Swerdloff R, Behre HM, Hellstrom WJ, Gooren LJ, Kaufman JM, Legros JJ, Lunenfeld B, Morales A, Morley JE, Schulman C, Thompson IM, Weidner W, Wu FC. Investigation, treatment and monitoring of late-onset hypogonadism in males. Int J Androl. 2009;32(1):1–10. https://doi.org/10.1111/j.1365-2605.2008.00924.x.

    Article  PubMed  Google Scholar 

  89. Wu FC, Tajar A, Beynon JM, Pye SR, Silman AJ, Finn JD, O’Neill TW, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, Kula K, Lean ME, Pendleton N, Punab M, Boonen S, Vanderschueren D, Labrie F, Huhtaniemi IT, Group E. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35. https://doi.org/10.1056/NEJMoa0911101.

  90. Santoro N, Randolph JF Jr. Reproductive hormones and the menopause transition. Obstet Gynecol Clin North Am. 2011;38(3):455–66. https://doi.org/10.1016/j.ogc.2011.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Clarke SA, Dhillo WS. Kisspeptin across the human lifespan:evidence from animal studies and beyond. J Endocrinol. 2016;229(3):R83-98. https://doi.org/10.1530/JOE-15-0538.

    Article  CAS  PubMed  Google Scholar 

  92. Shaw ND, Srouji SS, Histed SN, McCurnin KE, Hall JE. Aging attenuates the pituitary response to gonadotropin-releasing hormone. J Clin Endocrinol Metab. 2009;94(9):3259–64. https://doi.org/10.1210/jc.2009-0526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab. 1983;56(6):1278–81. https://doi.org/10.1210/jcem-56-6-1278.

    Article  CAS  PubMed  Google Scholar 

  94. Corona G, Goulis DG, Huhtaniemi I, Zitzmann M, Toppari J, Forti G, Vanderschueren D, Wu FC. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: Endorsing organization: European Society of Endocrinology. Andrology. 2020;8(5):970–87. https://doi.org/10.1111/andr.12770.

    Article  PubMed  Google Scholar 

  95. Spratt DI, Bigos ST, Beitins I, Cox P, Longcope C, Orav J. Both hyper- and hypogonadotropic hypogonadism occur transiently in acute illness: bio- and immunoactive gonadotropins. J Clin Endocrinol Metab. 1992;75(6):1562–70. https://doi.org/10.1210/jcem.75.6.1464665.

    Article  CAS  PubMed  Google Scholar 

  96. Gagliano-Juca T, Li Z, Pencina KM, Beleva YM, Carlson OD, Egan JM, Basaria S. Oral glucose load and mixed meal feeding lowers testosterone levels in healthy eugonadal men. Endocrine. 2019;63(1):149–56. https://doi.org/10.1007/s12020-018-1741-y.

    Article  CAS  PubMed  Google Scholar 

  97. Huhtaniemi, I.T., Tajar, A., Lee, D.M., O’Neill, T.W., Finn, J.D., Bartfai, G., Boonen, S., Casanueva, F.F., Giwercman, A., Han, T.S., Kula, K., Labrie, F., Lean, M.E., Pendleton, N., Punab, M., Silman, A.J., Vanderschueren, D., Forti, G., Wu, F.C., Group, E. Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnostics in aging men. Eur J Endocrinol. 2012;166(6):983–91. https://doi.org/10.1530/EJE-11-1051.

    Article  CAS  Google Scholar 

  98. Svalheim S, Sveberg L, Mochol M, Tauboll E. Interactions between antiepileptic drugs and hormones. Seizure. 2015;28:12–7. https://doi.org/10.1016/j.seizure.2015.02.022.

    Article  PubMed  Google Scholar 

  99. De Rosa M, Zarrilli S, Di Sarno A, Milano N, Gaccione M, Boggia B, Lombardi G, Colao A. Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine. 2003;20(1–2):75–82. https://doi.org/10.1385/ENDO:20:1-2:75.

    Article  PubMed  Google Scholar 

  100. Shin YS, Park JK. The Optimal Indication for Testosterone Replacement Therapy in Late Onset Hypogonadism. J Clin Med. 2019;8(2). https://doi.org/10.3390/jcm8020209.

  101. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM, Task Force ES. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–59. https://doi.org/10.1210/jc.2009-2354.

    Article  CAS  PubMed  Google Scholar 

  102. Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA, Gill TM, Barrett-Connor E, Swerdloff RS, Wang C, Ensrud KE, Lewis CE, Farrar JT, Cella D, Rosen RC, Pahor M, Crandall JP, Molitch ME, Cifelli D, Dougar D, Fluharty L, Resnick SM, Storer TW, Anton S, Basaria S, Diem SJ, Hou X, Mohler ER 3rd, Parsons JK, Wenger NK, Zeldow B, Landis JR, Ellenberg SS, Testosterone Trials I. Effects of testosterone treatment in older men. N Engl J Med. 2016;374(7):611–24. https://doi.org/10.1056/NEJMoa1506119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Srinivas-Shankar U, Roberts SA, Connolly MJ, O’Connell MD, Adams JE, Oldham JA, Wu FC. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95(2):639–50. https://doi.org/10.1210/jc.2009-1251.

    Article  CAS  PubMed  Google Scholar 

  104. Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, Travison TG, Miciek R, Tsitouras P, Hally K, Huang G, Bhasin S. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J Clin Endocrinol Metab. 2017;102(2):583–93. https://doi.org/10.1210/jc.2016-2771.

    Article  PubMed  Google Scholar 

  105. Sih R, Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Ross C. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):1661–7. https://doi.org/10.1210/jcem.82.6.3988.

    Article  CAS  PubMed  Google Scholar 

  106. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab. 2004;89(2):503–10. https://doi.org/10.1210/jc.2003-031110.

    Article  CAS  PubMed  Google Scholar 

  107. Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154(6):899–906. https://doi.org/10.1530/eje.1.02166.

    Article  CAS  PubMed  Google Scholar 

  108. Basu R, Dalla Man C, Campioni M, Basu A, Nair KS, Jensen MD, Khosla S, Klee G, Toffolo G, Cobelli C, Rizza RA. Effect of 2 years of testosterone replacement on insulin secretion, insulin action, glucose effectiveness, hepatic insulin clearance, and postprandial glucose turnover in elderly men. Diabetes Care. 2007;30(8):1972–8. https://doi.org/10.2337/dc07-0359.

    Article  CAS  PubMed  Google Scholar 

  109. Antonopoulou M, Sharma R, Farag A, Banerji MA, Karam JG. Hypopituitarism in the elderly. Maturitas. 2012;72(4):277–85. https://doi.org/10.1016/j.maturitas.2012.05.002.

    Article  CAS  PubMed  Google Scholar 

  110. Basaria S, Harman SM, Travison TG, Hodis H, Tsitouras P, Budoff M, Pencina KM, Vita J, Dzekov C, Mazer NA, Coviello AD, Knapp PE, Hally K, Pinjic E, Yan M, Storer TW, Bhasin S. Effects of testosterone administration for 3 years on subclinical atherosclerosis progression in older men with low or low-normal testosterone levels: a randomized clinical trial. JAMA. 2015;314(6):570–81. https://doi.org/10.1001/jama.2015.8881.

    Article  CAS  PubMed  Google Scholar 

  111. Yabluchanskiy A, Tsitouras PD. Is testosterone replacement therapy in older men effective and safe? Drugs Aging. 2019;36(11):981–9. https://doi.org/10.1007/s40266-019-00716-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Walker RF, Zakai NA, MacLehose RF, Cowan LT, Adam TJ, Alonso A, Lutsey PL. Association of testosterone therapy with risk of venous thromboembolism among men with and without hypogonadism. JAMA Intern Med. 2020;180(2):190–7. https://doi.org/10.1001/jamainternmed.2019.5135.

    Article  CAS  PubMed  Google Scholar 

  113. Lincoff AM, Bhasin S, Flevaris P, Mitchell LM, Basaria S, Boden WE, Cunningham GR, Granger CB, Khera M, Thompson IM Jr, Wang Q, Wolski K, Davey D, Kalahasti V, Khan N, Miller MG, Snabes MC, Chan A, Dubcenco E, Li X, Yi T, Huang B, Pencina KM, Travison TG, Nissen SE, Investigators TS. Cardiovascular safety of testosterone-replacement therapy. N Engl J Med. 2023;389(2):107–17. https://doi.org/10.1056/NEJMoa2215025.

    Article  CAS  PubMed  Google Scholar 

  114. Colao A, Vitale G, Cappabianca P, Briganti F, Ciccarelli A, De Rosa M, Zarrilli S, Lombardi G. Outcome of cabergoline treatment in men with prolactinoma: effects of a 24-month treatment on prolactin levels, tumor mass, recovery of pituitary function, and semen analysis. J Clin Endocrinol Metab. 2004;89(4):1704–11. https://doi.org/10.1210/jc.2003-030979.

    Article  CAS  PubMed  Google Scholar 

  115. Petersenn S, Fleseriu M, Casanueva FF, Giustina A, Biermasz N, Biller BMK, Bronstein M, Chanson P, Fukuoka H, Gadelha M, Greenman Y, Gurnell M, Ho KKY, Honegger J, Ioachimescu AG, Kaiser UB, Karavitaki N, Katznelson L, Lodish M, Maiter D, Marcus HJ, McCormack A, Molitch M, Muir CA, Neggers S, Pereira AM, Pivonello R, Post K, Raverot G, Salvatori R, Samson SL, Shimon I, Spencer-Segal J, Vila G, Wass J, Melmed S. Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat Rev Endocrinol. 2023. https://doi.org/10.1038/s41574-023-00886-5.

    Article  PubMed  Google Scholar 

  116. Kinon BJ, Ahl J, Liu-Seifert H, Maguire GA. Improvement in hyperprolactinemia and reproductive comorbidities in patients with schizophrenia switched from conventional antipsychotics or risperidone to olanzapine. Psychoneuroendocrinology. 2006;31(5):577–88. https://doi.org/10.1016/j.psyneuen.2005.12.006.

    Article  CAS  PubMed  Google Scholar 

  117. Garcia JM, Merriam GR, Kargi AY. Growth hormone in aging. In: Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., Kalra, S., Kaltsas, G., Kapoor, N., Koch, C., Kopp, P., Korbonits, M., Kovacs, C.S., Kuohung, W., Laferrère, B., Levy, M., McGee, E.A., McLachlan, R., New, M., Purnell, J., Sahay, R., Shah, A.S., Singer, F., Sperling, M.A., Stratakis, C.A., Trence, D.L., Wilson, D.P. (eds.) Endotext. MDText.com, Inc. Copyright © 2000–2023, MDText.com, Inc., South Dartmouth (MA). 2000.

  118. Veldhuis JD. Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol. 2013;9(4):205–15. https://doi.org/10.1038/nrendo.2013.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu D, Pawlikowska L, Kanaya A, Hsueh WC, Colbert L, Newman AB, Satterfield S, Rosen C, Cummings SR, Harris TB, Ziv E. Serum insulin-like growth factor-1 binding proteins 1 and 2 and mortality in older adults: the Health, Aging, and Body Composition Study. J Am Geriatr Soc. 2009;57(7):1213–8. https://doi.org/10.1111/j.1532-5415.2009.02318.x.

    Article  PubMed  PubMed Central  Google Scholar 

  120. van den Beld AW, Blum WF, Brugts MP, Janssen JA, Grobbee DE, Lamberts SW. High IGFBP2 levels are not only associated with a better metabolic risk profile but also with increased mortality in elderly men. Eur J Endocrinol. 2012;167(1):111–7. https://doi.org/10.1530/eje-12-0160.

    Article  PubMed  Google Scholar 

  121. Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev. 2005;126(2):305–7. https://doi.org/10.1016/j.mad.2004.08.022.

    Article  CAS  PubMed  Google Scholar 

  122. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;89(1):114–20. https://doi.org/10.1210/jc.2003-030967.

    Article  CAS  PubMed  Google Scholar 

  123. Burgers AM, Biermasz NR, Schoones JW, Pereira AM, Renehan AG, Zwahlen M, Egger M, Dekkers OM. Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab. 2011;96(9):2912–20. https://doi.org/10.1210/jc.2011-1377.

    Article  CAS  PubMed  Google Scholar 

  124. Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(6):1587–609. https://doi.org/10.1210/jc.2011-0179.

    Article  CAS  PubMed  Google Scholar 

  125. Darzy KH, Aimaretti G, Wieringa G, Gattamaneni HR, Ghigo E, Shalet SM. The usefulness of the combined growth hormone (GH)-releasing hormone and arginine stimulation test in the diagnosis of radiation-induced GH deficiency is dependent on the post-irradiation time interval. J Clin Endocrinol Metab. 2003;88(1):95–102. https://doi.org/10.1210/jc.2002-021094.

    Article  CAS  PubMed  Google Scholar 

  126. Yuen KCJ. Growth hormone stimulation tests in assessing adult growth hormone deficiency. In: Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., Kalra, S., Kaltsas, G., Kapoor, N., Koch, C., Kopp, P., Korbonits, M., Kovacs, C.S., Kuohung, W., Laferrère, B., Levy, M., McGee, E.A., McLachlan, R., New, M., Purnell, J., Sahay, R., Shah, A.S., Singer, F., Sperling, M.A., Stratakis, C.A., Trence, D.L., Wilson, D.P. (eds.) Endotext. MDText.com, Inc. Copyright © 2000–2023, MDText.com, Inc., South Dartmouth (MA). 2000.

  127. Garcia JM, Swerdloff R, Wang C, Kyle M, Kipnes M, Biller BM, Cook D, Yuen KC, Bonert V, Dobs A, Molitch ME, Merriam GR. Macimorelin (AEZS-130)-stimulated growth hormone (GH) test: validation of a novel oral stimulation test for the diagnosis of adult GH deficiency. J Clin Endocrinol Metab. 2013;98(6):2422–9. https://doi.org/10.1210/jc.2013-1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Garcia JM, Biller BMK, Korbonits M, Popovic V, Luger A, Strasburger CJ, Chanson P, Medic-Stojanoska M, Schopohl J, Zakrzewska A, Pekic S, Bolanowski M, Swerdloff R, Wang C, Blevins T, Marcelli M, Ammer N, Sachse R, Yuen KCJ. Macimorelin as a diagnostic test for adult GH deficiency. J Clin Endocrinol Metab. 2018;103(8):3083–93. https://doi.org/10.1210/jc.2018-00665.

    Article  PubMed  Google Scholar 

  129. Tritos NA. Growth hormone deficiency in adults with Cushing’s disease. Best Pract Res Clin Endocrinol Metab. 2021;35(2):101474. https://doi.org/10.1016/j.beem.2020.101474.

    Article  CAS  PubMed  Google Scholar 

  130. Garcia JM, Biller BMK, Korbonits M, Popovic V, Luger A, Strasburger CJ, Chanson P, Swerdloff R, Wang C, Fleming RR, Cohen F, Ammer N, Mueller G, Kelepouris N, Strobl F, Ostrow V, Yuen KCJ. Sensitivity and specificity of the macimorelin test for diagnosis of AGHD. Endocr Connect. 2021;10(1):76–83. https://doi.org/10.1530/ec-20-0491.

    Article  CAS  PubMed  Google Scholar 

  131. Blackman MR, Sorkin JD, Münzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O’Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92. https://doi.org/10.1001/jama.288.18.2282.

    Article  CAS  PubMed  Google Scholar 

  132. Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, Hoffman AR. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med. 2007;146(2):104–15. https://doi.org/10.7326/0003-4819-146-2-200701160-00005.

    Article  PubMed  Google Scholar 

  133. Higham CE, Johannsson G, Shalet SM. Hypopituitarism Lancet. 2016;388(10058):2403–15. https://doi.org/10.1016/s0140-6736(16)30053-8.

    Article  CAS  PubMed  Google Scholar 

  134. Maison P, Griffin S, Nicoue-Beglah M, Haddad N, Balkau B, Chanson P. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a metaanalysis of blinded, randomized, placebo-controlled trials. J Clin Endocrinol Metab. 2004;89(5):2192–9. https://doi.org/10.1210/jc.2003-030840.

    Article  CAS  PubMed  Google Scholar 

  135. Kokshoorn NE, Biermasz NR, Roelfsema F, Smit JW, Pereira AM, Romijn JA. GH replacement therapy in elderly GH-deficient patients: a systematic review. Eur J Endocrinol. 2011;164(5):657–65. https://doi.org/10.1530/eje-10-1170.

    Article  CAS  PubMed  Google Scholar 

  136. Elgzyri T, Castenfors J, Hägg E, Backman C, Thorén M, Bramnert M. The effects of GH replacement therapy on cardiac morphology and function, exercise capacity and serum lipids in elderly patients with GH deficiency. Clin Endocrinol (Oxf). 2004;61(1):113–22. https://doi.org/10.1111/j.1365-2265.2004.02080.x.

    Article  CAS  PubMed  Google Scholar 

  137. Scarano E, Riccio E, Somma T, Arianna R, Romano F, Di Benedetto E, de Alteriis G, Colao A, Di Somma C. Impact of long-term growth hormone replacement therapy on metabolic and cardiovascular parameters in adult growth hormone deficiency: Comparison between adult and elderly patients. Front Endocrinol (Lausanne). 2021;12:635983. https://doi.org/10.3389/fendo.2021.635983.

    Article  PubMed  Google Scholar 

  138. Franco C, Johannsson G, Bengtsson BA, Svensson J. Baseline characteristics and effects of growth hormone therapy over two years in younger and elderly adults with adult onset GH deficiency. J Clin Endocrinol Metab. 2006;91(11):4408–14. https://doi.org/10.1210/jc.2006-0887.

    Article  CAS  PubMed  Google Scholar 

  139. Götherström G, Elbornsson M, Stibrant-Sunnerhagen K, Bengtsson BA, Johannsson G, Svensson J. Muscle strength in elderly adults with GH deficiency after 10 years of GH replacement. Eur J Endocrinol. 2010;163(2):207–15. https://doi.org/10.1530/eje-10-0009.

    Article  PubMed  Google Scholar 

  140. Elbornsson M, Götherström G, Franco C, Bengtsson B, Johannsson G, Svensson J. Effects of 3-year GH replacement therapy on bone mineral density in younger and elderly adults with adult-onset GH deficiency. Eur J Endocrinol. 2012;166(2):181–9. https://doi.org/10.1530/eje-11-0886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ricci Bitti S, Franco M, Albertelli M, Gatto F, Vera L, Ferone D, Boschetti M. GH replacement in the elderly: is it worth it? Front Endocrinol (Lausanne). 2021;12:680579. https://doi.org/10.3389/fendo.2021.680579.

    Article  PubMed  Google Scholar 

  142. Sathiavageeswaran M, Burman P, Lawrence D, Harris AG, Falleti MG, Maruff P, Wass J. Effects of GH on cognitive function in elderly patients with adult-onset GH deficiency: a placebo-controlled 12-month study. Eur J Endocrinol. 2007;156(4):439–47. https://doi.org/10.1530/eje.1.02346.

    Article  CAS  PubMed  Google Scholar 

  143. Aleman A, Verhaar HJ, De Haan EH, De Vries WR, Samson MM, Drent ML, Van der Veen EA, Koppeschaar HP. Insulin-like growth factor-I and cognitive function in healthy older men. J Clin Endocrinol Metab. 1999;84(2):471–5. https://doi.org/10.1210/jcem.84.2.5455.

    Article  CAS  PubMed  Google Scholar 

  144. Monson JP, Abs R, Bengtsson BA, Bennmarker H, Feldt-Rasmussen U, Hernberg-Stâhl E, Thorén M, Westberg B, Wilton P, Wüster C. Growth hormone deficiency and replacement in elderly hypopituitary adults. KIMS Study Group and the KIMS International Board. Pharmacia and Upjohn International Metabolic Database. Clin Endocrinol (Oxf). 2000;53(3):281–9. https://doi.org/10.1046/j.1365-2265.2000.01104.x.

    Article  CAS  PubMed  Google Scholar 

  145. Paragliola RM, Locantore P, Corsello SM, Salvatori R. Treating hypopituitarism in the over 65s: review of clinical studies. Clin Interv Aging. 2023;18:423–39. https://doi.org/10.2147/cia.S370782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shoung N, Ho KKY. Managing estrogen therapy in the pituitary patient. J Endocr Soc. 2023;7(5). https://doi.org/10.1210/jendso/bvad051.

  147. Bernard V, Young J, Binart N. Prolactin - a pleiotropic factor in health and disease. Nat Rev Endocrinol. 2019;15(6):356–65. https://doi.org/10.1038/s41574-019-0194-6.

    Article  CAS  PubMed  Google Scholar 

  148. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, Abbott RD, Savica R, Van Den Eeden SK, Willis AW, Tanner CM, Parkinson’s Foundation PG. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis. 2018;4:21. https://doi.org/10.1038/s41531-018-0058-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tritos NA, Klibanski A. Hyperprolactinemia Jama. 2015;314(16):1742–3. https://doi.org/10.1001/jama.2015.7871.

    Article  CAS  PubMed  Google Scholar 

  150. Kirsch P, Kunadia J, Shah S, Agrawal N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front Endocrinol (Lausanne). 2022;13:1002320. https://doi.org/10.3389/fendo.2022.1002320.

    Article  PubMed  Google Scholar 

  151. Karaca Z, Unluhizarci K, Kelestimur F. Hypoprolactinemia. Does it matter? Redefining the hypopituitarism and return from a mumpsimus : “Absence of proof is not the proof of absence.” Rev Endocr Metab Disord. 2023. https://doi.org/10.1007/s11154-023-09847-9.

  152. Corona G, Mannucci E, Jannini EA, Lotti F, Ricca V, Monami M, Boddi V, Bandini E, Balercia G, Forti G, Maggi M. Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J Sex Med. 2009;6(5):1457–66. https://doi.org/10.1111/j.1743-6109.2008.01206.x.

    Article  CAS  PubMed  Google Scholar 

  153. Wang T, Lu J, Xu Y, Li M, Sun J, Zhang J, Xu B, Xu M, Chen Y, Bi Y, Wang W, Ning G. Circulating prolactin associates with diabetes and impaired glucose regulation: a population-based study. Diabetes Care. 2013;36(7):1974–80. https://doi.org/10.2337/dc12-1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Macotela Y, Ruiz-Herrera X, Vázquez-Carrillo DI, Ramírez-Hernandez G, Martínez de la Escalera G, Clapp C. The beneficial metabolic actions of prolactin. Front Endocrinol (Lausanne). 2022;13:1001703. https://doi.org/10.3389/fendo.2022.1001703.

    Article  PubMed  Google Scholar 

  155. Toledano Y, Lubetsky A, Shimon I. Acquired prolactin deficiency in patients with disorders of the hypothalamic-pituitary axis. J Endocrinol Invest. 2007;30(4):268–73. https://doi.org/10.1007/bf03346292.

    Article  CAS  PubMed  Google Scholar 

  156. Mukherjee A, Murray RD, Columb B, Gleeson HK, Shalet SM. Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic-pituitary axis. Clin Endocrinol (Oxf). 2003;59(6):743–8. https://doi.org/10.1046/j.1365-2265.2003.01916.x.

    Article  PubMed  Google Scholar 

  157. Hawkins RC. Age and gender as risk factors for hyponatremia and hypernatremia. Clin Chim Acta. 2003;337(1–2):169–72. https://doi.org/10.1016/j.cccn.2003.08.001.

    Article  CAS  PubMed  Google Scholar 

  158. Robinson AG, Verbalis JG. Chapter 10 - Posterior Pituitary. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams Textbook of Endocrinology (Thirteenth Edition). Philadelphia: Elsevier; 2016. p. 300–32.

    Chapter  Google Scholar 

  159. Salvatori R. Posterior pituitary abnormalities caused by pituitary tumors. Curr Opin Endocr Metabol Res. 2018;1:25–8. https://doi.org/10.1016/j.coemr.2018.01.003.

    Article  Google Scholar 

  160. Fenske W, Refardt J, Chifu I, Schnyder I, Winzeler B, Drummond J, Ribeiro-Oliveira A, Drescher T, Bilz S, Vogt DR, Malzahn U, Kroiss M, Christ E, Henzen C, Fischli S, Tönjes A, Mueller B, Schopohl J, Flitsch J, Brabant G, Fassnacht M, Christ-Crain M. A copeptin-based approach in the diagnosis of diabetes insipidus. N Engl J Med. 2018;379(5):428–39. https://doi.org/10.1056/NEJMoa1803760.

    Article  CAS  PubMed  Google Scholar 

  161. Winzeler B, Cesana-Nigro N, Refardt J, Vogt DR, Imber C, Morin B, Popovic M, Steinmetz M, Sailer CO, Szinnai G, Chifu I, Fassnacht M, Christ-Crain M. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: a prospective diagnostic study. Lancet. 2019;394(10198):587–95. https://doi.org/10.1016/s0140-6736(19)31255-3.

    Article  CAS  PubMed  Google Scholar 

  162. Liamis G, Milionis HJ, Elisaf M. A review of drug-induced hypernatraemia. NDT Plus. 2009;2(5):339–46. https://doi.org/10.1093/ndtplus/sfp085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Robinson AG. DDAVP in the treatment of central diabetes insipidus. N Engl J Med. 1976;294(10):507–11. https://doi.org/10.1056/nejm197603042941001.

    Article  CAS  PubMed  Google Scholar 

  164. Juul KV, Klein BM, Sandström R, Erichsen L, Nørgaard JP. Gender difference in antidiuretic response to desmopressin. Am J Physiol Renal Physiol. 2011;300(5):F1116-1122. https://doi.org/10.1152/ajprenal.00741.2010.

    Article  CAS  PubMed  Google Scholar 

  165. Pinto TE, Mokashi A, Cummings EA. Central diabetes insipidus and pain medications - a risky combination. Clin Diabetes Endocrinol. 2021;7(1):11. https://doi.org/10.1186/s40842-021-00124-9.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Filippatos TD, Makri A, Elisaf MS, Liamis G. Hyponatremia in the elderly: challenges and solutions. Clin Interv Aging. 2017;12:1957–65. https://doi.org/10.2147/cia.S138535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tomkins M, Lawless S, Martin-Grace J, Sherlock M, Thompson CJ. Diagnosis and management of central diabetes insipidus in adults. J Clin Endocrinol Metab. 2022;107(10):2701–15. https://doi.org/10.1210/clinem/dgac381.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Salvatori.

Ethics declarations

Competing interests

Prof. Salvatori reports personal fees as member of the NovoNordisk, and Camurus advisory board. The other authors report no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsello, A., Paragliola, R.M. & Salvatori, R. Diagnosing and treating the elderly individual with hypopituitarism. Rev Endocr Metab Disord 25, 575–597 (2024). https://doi.org/10.1007/s11154-023-09870-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09870-w

Keywords

Navigation