Log in

Adsorption study of methylene blue dye removal with activated carbon derived from Leucaena leucocephala wastes prepared via H3PO4 activation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study aims to valorize agricultural waste of Leucaena leucocephala pods (LP) as a low-cost precursor for synthesizing high-performance activated carbon (LP-AC) for the removal of methylene blue dye (MB). Phosphoric acid H3PO4 was employed as a chemical activator of the LP biomass with a mass ratio of phosphoric acid to the precursor (3/1) before being calcined at 500 °C for 55 min. Box Benken design was investigated to optimize the experimental parameters of initial concentration, adsorbent dose, and pH. Variable optimization indicated that the highest removal efficiency of MB dye, estimated as 99.99%, was noticed at the initial concentration of 300.87 mg L−1, adsorbent dose of 0.049 g, and solution pH of 10.07. Isotherm study revealed that Temkin model shows the best agreement with the experimental data with a correlation coefficient of (R2 = 0.990). The adsorption capacity of MB dye was determined as 584.32 mg g−1. The kinetic study suggested that the pseudo-second-order model is the best-correlated model for data fitting with (R2 > 0.997). The thermodynamic analysis indicated an enthalpy change (ΔH) of − 18.50 kJ/mol, confirming that the adsorption of MB dye onto LP-AC material is an exothermic process. SEM characterization of the surface showed that the LP-AC exhibits a heterogeneous structure. The BET analysis revealed a remarkable surface area of 1367.30 m2 g−1 for the produced carbon, including a blend of mesoporous and microporous structures. Furthermore, complementary analyses including EDS, TGA, and FTIR confirmed the presence of crucial properties, underscoring its potential effectiveness as an adsorbent for removing MB dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gohr MS, Abd-Elhamid AI, El-Shanshory AA, Soliman HM (2022) Adsorption of cationic dyes onto chemically modified activated carbon: kinetics and thermodynamic study. J Mol Liq 346:118227. https://doi.org/10.1016/j.molliq.2021.118227

    Article  CAS  Google Scholar 

  2. Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511. https://doi.org/10.1016/j.cej.2012.12.038

    Article  CAS  Google Scholar 

  3. Zhao W-d, Chen L-P, Jiao Y (2023) Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Sci Eng 16:192–202. https://doi.org/10.1016/j.wse.2023.02.002

    Article  Google Scholar 

  4. Boudghene Stambouli H, Guenfoud F, Benomara A et al (2021) Synthesis of FeWO4 heterogeneous composite by the sol–gel process: enhanced photocatalytic activity on malachite green. Reac Kinet Mech Cat 133:563–578. https://doi.org/10.1007/s11144-021-01994-x

    Article  CAS  Google Scholar 

  5. Yueqin Yu, Zhao C, Liu X, Sui M, Meng Y (2017) Selective flocculation of pollutants in wastewater using pH responsive HM-alginate/chitosan complexes. J Environ Chem Eng 5:5406–5410. https://doi.org/10.1016/j.jece.2017.10.025

    Article  CAS  Google Scholar 

  6. Liu H, Zhang J, Lu M et al (2020) Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chem Eng J 387:124202. https://doi.org/10.1016/j.cej.2020.124202

    Article  CAS  Google Scholar 

  7. Ikram M, Zahoor M, Batiha GE-S (2021) Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Z Phys Chem 235:1381–1393. https://doi.org/10.1515/zpch-2020-1708

    Article  CAS  Google Scholar 

  8. Popovici DR, Neagu M, Dusescu-Vasile CM et al (2021) Adsorption of p-nitrophenol onto activated carbon prepared from fir sawdust: isotherm studies and error analysis. Reac Kinet Mech Cat 133:483–500. https://doi.org/10.1007/s11144-021-01997-8

    Article  CAS  Google Scholar 

  9. Li X, Tang S, Yuan D et al (2019) Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotoxicol Environ Saf 177:77–85. https://doi.org/10.1016/j.ecoenv.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  10. Mohamed FF, Allah PM, Mehdi AP, Baseem M (2011) Photoremoval of malachite green (MG) using advanced oxidation process. Res J Chem Environ 15:65–70

    CAS  Google Scholar 

  11. Surip SN, Abdulhameed AS, Garba ZN et al (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surf Interfaces 21:100641. https://doi.org/10.1016/j.surfin.2020.100641

    Article  CAS  Google Scholar 

  12. Jawad AH, Mastuli MS, Mallah S, Mastuli S (2019) Adsorption behavior of methylene blue on acid-treated rubber (Hevea brasiliensis) leaf. Desalin Water Treat 124:297–307. https://doi.org/10.5004/dwt.2018

    Article  Google Scholar 

  13. **e J, Lin R, Liang Z et al (2021) Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism. J Environ Chem Eng 9:105744. https://doi.org/10.1016/j.jece.2021.105744

    Article  CAS  Google Scholar 

  14. Igwegbe CA, Onukwuli OD, Ighalo JO, Okoye PU (2020) Adsorption of cationic dyes on Dacryodes edulis seeds activated carbon modified using phosphoric acid and sodium chloride. Environ Process 7:1151–1171. https://doi.org/10.1007/s40710-020-00467-y

    Article  CAS  Google Scholar 

  15. Luo Y, Li D, Chen Y et al (2019) The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue. J Mater Sci 54:5008–5021. https://doi.org/10.1007/s10853-018-03220-x

    Article  CAS  Google Scholar 

  16. Pang X, Sellaoui L, Franco D et al (2020) Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions. Chem Eng J 391:123617. https://doi.org/10.1016/j.cej.2019.123617

    Article  CAS  Google Scholar 

  17. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  18. Al-Qaim FF, Al-Saedi HFS, Mussa ZH et al (2024) Application of the response surface approach to the adsorption of methylene blue from water using acid-modified grape leaves. Reac Kinet Mech Cat 137:399–422. https://doi.org/10.1007/s11144-023-02542-5

    Article  CAS  Google Scholar 

  19. Bageel A, Honda MDH, Carrillo JT, Borthakur D (2020) Giant leucaena (Leucaena leucocephala subsp. glabrata): a versatile tree-legume for sustainable agroforestry. Agroforest Syst 94:251–268. https://doi.org/10.1007/s10457-019-00392-6

    Article  Google Scholar 

  20. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14:305–313. https://doi.org/10.1080/16583655.2020.1736767

    Article  Google Scholar 

  21. Ahmed MJ (2016) Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. J Environ Chem Eng 4:89–99. https://doi.org/10.1016/j.jece.2015.10.027

    Article  CAS  Google Scholar 

  22. Yahya MA, Al-Qodah Z, Ngah CZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  23. Martínez de Yuso A, Rubio B, Izquierdo MT (2014) Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons. Fuel Process Technol 119:74–80. https://doi.org/10.1016/j.fuproc.2013.10.024

    Article  CAS  Google Scholar 

  24. Yusuff AS (2019) Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: equilibrium, kinetic and thermodynamic studies. Arab J Basic Appl Sci 26:89–102. https://doi.org/10.1080/25765299.2019.1567656

    Article  Google Scholar 

  25. Patidar K, Vashishtha M (2020) Optimization of process variables to prepare mesoporous activated carbon from mustard straw for dye adsorption using response surface methodology. Water Air Soil Pollut 231:526. https://doi.org/10.1007/s11270-020-04893-4

    Article  CAS  Google Scholar 

  26. Francoeur M, Ferino-Pérez A, Yacou C et al (2021) Activated carbon synthetized from Sargassum (sp) for adsorption of caffeine: understanding the adsorption mechanism using molecular modeling. J Environ Chem Eng 9:104795. https://doi.org/10.1016/j.jece.2020.104795

    Article  CAS  Google Scholar 

  27. Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA (2022) Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modelling, optimisation, and mechanism study. Int J Environ Anal Chem 102:6061–6077. https://doi.org/10.1080/03067319.2020.1807529

    Article  CAS  Google Scholar 

  28. Oginni O, Singh K, Oporto G et al (2019) Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Biores Technol Rep 8:100307. https://doi.org/10.1016/j.biteb.2019.100307

    Article  Google Scholar 

  29. Belhamdi B, Merzougui Z, Laksaci H, Trari M (2019) The removal and adsorption mechanisms of free amino acid l-tryptophan from aqueous solution by biomass-based activated carbon by H3PO4 activation: regeneration study. Phys Chem Earth A/B/C 114:102791. https://doi.org/10.1016/j.pce.2019.07.004

    Article  Google Scholar 

  30. Li X, Han D, Zhang M et al (2019) Removal of toxic dyes from aqueous solution using new activated carbon materials developed from oil sludge waste. Colloids Surf A 578:123505. https://doi.org/10.1016/j.colsurfa.2019.05.066

    Article  CAS  Google Scholar 

  31. Solomon D, Kiflie Z, Van Hulle S (2020) Using Box–Behnken experimental design to optimize the degradation of Basic Blue 41 dye by Fenton reaction. Int J Ind Chem 11:43–53. https://doi.org/10.1007/s40090-020-00201-5

    Article  CAS  Google Scholar 

  32. Sadaf S, Bhatti HN (2016) Response surface methodology approach for optimization of adsorption process for the removal of Indosol Yellow BG dye from aqueous solution by agricultural waste. Desalin Water Treat 57:11773–11781. https://doi.org/10.1080/19443994.2015.1048308

    Article  CAS  Google Scholar 

  33. Okolo BI, Oke EO, Agu CM et al (2020) Adsorption of lead(II) from aqueous solution using Africa elemi seed, mucuna shell and oyster shell as adsorbents and optimization using Box–Behnken design. Appl Water Sci 10:1–23. https://doi.org/10.1007/s13201-020-01242-y

    Article  CAS  Google Scholar 

  34. Ahmadi S, Mohammadi L, Rahdar A et al (2020) Acid dye removal from aqueous solution by using neodymium(III) oxide nanoadsorbents. Nanomaterials 10:556. https://doi.org/10.3390/nano10030556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bedada D, Angassa K, Tiruneh A et al (2020) Chromium removal from tannery wastewater through activated carbon produced from Parthenium hysterophorus weed. Energ Ecol Environ 5:184–195. https://doi.org/10.1007/s40974-020-00160-8

    Article  Google Scholar 

  36. Okpara OG, Ogbeide OM, Ike OC et al (2021) Optimum isotherm by linear and nonlinear regression methods for lead(II) ions adsorption from aqueous solutions using synthesized coconut shell–activated carbon (SCSAC). Toxin Reviews 40:901–914. https://doi.org/10.1080/15569543.2020.1802596

    Article  CAS  Google Scholar 

  37. Hadi M, Samarghandi MR, McKay G (2010) Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: study of residual errors. Chem Eng J 160:408–416. https://doi.org/10.1016/j.cej.2010.03.016

    Article  CAS  Google Scholar 

  38. Manna S, Roy D, Saha P et al (2017) Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf Environ Prot 107:346–356. https://doi.org/10.1016/j.psep.2017.03.008

    Article  CAS  Google Scholar 

  39. Mbarki F, Selmi T, Kesraoui A, Seffen M (2022) Low-cost activated carbon preparation from corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind Crops Prod 178:114546. https://doi.org/10.1016/j.indcrop.2022.114546

    Article  CAS  Google Scholar 

  40. Raji Y, Nadi A, Mechnou I et al (2023) High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: characterization, adsorption and mechanism study. Diam Relat Mater 135:109834. https://doi.org/10.1016/j.diamond.2023.109834

    Article  CAS  Google Scholar 

  41. Fennouh R, Benturki O, Mokhati A et al (2023) Preparation and characterization of highly mesoporous activated carbon from Ziziphus Spina-Christi for tartrazine adsorption from a simulated effluent. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04296-5

    Article  Google Scholar 

  42. Yilmaz P, Gunduz D, Ozbek B (2021) Utilization of low-cost bio-waste adsorbent for methylene blue dye removal from aqueous solutions and optimization of process variables by response surface methodology approach. Desal Water Treat 224:367–388. https://doi.org/10.5004/dwt.2021.27206

    Article  CAS  Google Scholar 

  43. Afroze S, Sen TK, Ang M, Nishioka H (2016) Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism. Desalin Water Treat 57:5858–5878. https://doi.org/10.1080/19443994.2015.1004115

    Article  CAS  Google Scholar 

  44. Liu H, Zhang J, Bao N et al (2012) Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim. J Hazard Mater 235:367–375. https://doi.org/10.1016/j.jhazmat.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  45. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  CAS  Google Scholar 

  46. Nabih MH, El Hajam M, Boulika H et al (2023) Preparation and characterization of activated carbons from cardoon “Cynara Cardunculus” waste: application to the adsorption of synthetic organic dyes. Mater Today 72:3369–3379. https://doi.org/10.1016/j.matpr.2022.07.414

    Article  CAS  Google Scholar 

  47. Nasrullah A, Saad B, Bhat AH et al (2019) Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: characterization and application for methylene blue removal. J Clean Prod 211:1190–1200. https://doi.org/10.1016/j.jclepro.2018.11.094

    Article  CAS  Google Scholar 

  48. Netto MS, Georgin J, Franco DSP et al (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4

    Article  CAS  Google Scholar 

  49. Koyuncu F, Güzel F, Sayğılı H (2018) Role of optimization parameters in the production of nanoporous carbon from mandarin shells by microwave-assisted chemical activation and utilization as dye adsorbent. Adv Powder Technol 29:2108–2118. https://doi.org/10.1016/j.apt.2018.05.019

    Article  CAS  Google Scholar 

  50. Chimi T, Hannah BU, Lincold NM et al (2023) Preparation, characterization and application of H3PO4-activated carbon from Pentaclethra macrophylla pods for the removal of Cr(VI) in aqueous medium. J Iran Chem Soc 20:399–413. https://doi.org/10.1007/s13738-022-02675-9

    Article  CAS  Google Scholar 

  51. Attallah OA, Mamdouh W (2021) Development and optimization of pectin/chitosan magnetic sponge for efficient cationic dyes removal using Box–Behnken design. Int J Environ Sci Technol 18:131–140. https://doi.org/10.1007/s13762-020-02828-4

    Article  CAS  Google Scholar 

  52. Afshin S, Rashtbari Y, Vosough M et al (2021) Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: kinetics and equilibrium study. J Water Process Eng 42:102113. https://doi.org/10.1016/j.jwpe.2021.102113

    Article  Google Scholar 

  53. Sahu S, Pahi S, Tripathy S et al (2020) Adsorption of methylene blue on chemically modified lychee seed biochar: dynamic, equilibrium, and thermodynamic study. J Mol Liq 315:113743. https://doi.org/10.1016/j.molliq.2020.113743

    Article  CAS  Google Scholar 

  54. Sen K, Mondal NK, Chattoraj S, Datta JK (2017) Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology. Environ Earth Sci 76:1–15. https://doi.org/10.1007/s12665-016-6333-7

    Article  CAS  Google Scholar 

  55. Ahmad NH, Mohamed MA, Yusoff SFM (2020) Improved adsorption performance of rubber-based hydrogel: optimisation through response surface methodology, isotherm, and kinetic studies. J Sol–Gel Sci Technol 94:322–334. https://doi.org/10.1007/s10971-020-05254-7

    Article  CAS  Google Scholar 

  56. Takele T, Angassa K, Abewaa M et al (2023) Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from H3PO4-activated khat stem waste. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-05245-y

    Article  Google Scholar 

  57. Martins AC, Pezoti O, Cazetta AL et al (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299. https://doi.org/10.1016/j.cej.2014.09.017

    Article  CAS  Google Scholar 

  58. Üner O, Geçgel Ü, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus Rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227:247. https://doi.org/10.1007/s11270-016-2949-1

    Article  CAS  Google Scholar 

  59. Attia AA, Girgis BS, Khedr SA (2003) Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenolics. J Chem Technol Biotechnol 78:611–619. https://doi.org/10.1002/jctb.743

    Article  CAS  Google Scholar 

  60. Jawad AH, Bardhan M, Islam MA et al (2020) Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf Interfaces 21:100688. https://doi.org/10.1016/j.surfin.2020.100688

    Article  CAS  Google Scholar 

  61. Ibrahim M, Souleiman M, Salloum A (2023) Methylene blue dye adsorption onto activated carbon developed from Calicotome villosa via H3PO4 activation. Biomass Conv Bioref 13:12763–12776. https://doi.org/10.1007/s13399-021-02027-2

    Article  CAS  Google Scholar 

  62. Belaissa Y, Saib F, Trari M (2022) Removal of amoxicillin in aqueous solutions by a chemical activated carbons derived from Jujube nuts: adsorption behaviors, kinetic and thermodynamic studies. Reac Kinet Mech Cat 135:1011–1030. https://doi.org/10.1007/s11144-022-02159-0

    Article  CAS  Google Scholar 

  63. Mozhiarasi V, Natarajan TS (2022) Bael fruit shell-derived activated carbon adsorbent: effect of surface charge of activated carbon and type of pollutants for improved adsorption capacity. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03211-8

    Article  Google Scholar 

  64. Baytar O, Ceyhan AA, Şahin Ö (2020) Production of activated carbon from Elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption. Int J Phytoremediat. https://doi.org/10.1080/15226514.2020.1849015

    Article  Google Scholar 

  65. Daniel LS, Rahman A, Hamushembe MN et al (2023) The production of activated carbon from Acacia erioloba seedpods via phosphoric acid activation method for the removal of methylene blue from water. Biores Technol Rep 23:101568. https://doi.org/10.1016/j.biteb.2023.101568

    Article  CAS  Google Scholar 

  66. Li M, Mu J, Liu Y et al (2023) Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater. Res Chem Intermed 49:2209–2232. https://doi.org/10.1007/s11164-023-04958-z

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour EI Houda Laouar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1624 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laouar, N.E.H., Boukerroui, A., Meziti, C. et al. Adsorption study of methylene blue dye removal with activated carbon derived from Leucaena leucocephala wastes prepared via H3PO4 activation. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02677-z

Keywords

Navigation