Log in

Hydrogenation of phenol to cyclohexanol and cyclohexanone on ZrO2-supported Ni-Co alloy in water

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

ZrO2-supported Ni and Ni-Co alloy catalysts were synthesized by co-precipitation method and tested for the hydrogenation of phenol in aqueous phase. Cyclohexanol and cyclohexanone are dominatingly generated on all the catalysts, and the deoxygenation products are minor. The Ni-Co alloy gives higher phenol conversion and the total yield of cyclohexanol and cyclohexanone compared to the metallic Ni. This is attributed to high metal dispersion due to the formation of Ni-Co alloy and the synergetic effect of Ni and Co in the alloy. ZrO2-supported Ni-Co alloy with the Ni/Co atomic ratio of 1 and the metal mass loading of 15% possesses the best performance. The total yield of cyclohexanol and cyclohexanone reaches 91.3% with the cyclohexanol/cyclohexanone molar ratio of 2.79. The phase composition of ZrO2-supported Ni-Co alloy remains stable during recycling, while the slight sintering of ZrO2 and Ni-Co alloy particles can account for the catalyst deactivation. It has also been found that the presence of water may facilitate the keto-enol tautomerization and stabilize the ketone intermediates, leading to higher cyclohexanone yield than using n-octane as solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Data availability

There is no additional data available. All other data are available from the authors upon reasonable request.

References

  1. Zhou H, Wang H, Sadow AD, Slowing II (2020) Toward hydrogen economy: Selective guaiacol hydrogenolysis under ambient hydrogen pressure. Appl Catal B 270:118890

    Article  CAS  Google Scholar 

  2. Dickinson JG, Savage PE (2014) Development of NiCu catalysts for aqueous-phase hydrodeoxygenation. ACS Catal 4:2605–2615

    Article  CAS  Google Scholar 

  3. Feng L, Gao Y, Dai Z, Dan H, **ao F, Yue Q, Gao B, Wang S (2021) Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. J Hazard Mater 415:125594

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Zhao F, Fujita SI, Arai M (2008) Hydrogenation of phenol in scCO2 over carbon nanofiber supported Rh catalyst. Catal Commun 9:362–368

    Article  Google Scholar 

  5. Zhan J, Hu R, Luo X, Zhang C, Luo G, Fan J, Clark JH, Zhang S (2022) Highly selective conversion of phenol to cyclohexanol over Ru/Nb2O5-nC18PA catalysts with increased acidity in a biphasic system under mild conditions. Green Chem 24:1152–1164

    Article  CAS  Google Scholar 

  6. Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II (2015) Selective hydrogenation of phenol catalyzed by Palladium on high-surface-area Ceria at room temperature and ambient pressure. ACS Catal 5:2051–2061

    Article  CAS  Google Scholar 

  7. Zhou M, Ye J, Liu P, Xu J, Jiang J (2017) Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustain Chem Eng 5:8824–8835

    Article  CAS  Google Scholar 

  8. Chen M, Zhong Q, Zhang M, Huang H, Liu Y, Wei Z (2022) Aqueous phase partial hydrodeoxygenation of lignin-derived phenols over Al2O3-SiO2 microspheres supported RuMn multifunctional catalyst: Synergic effect among Ru, Mn and Al2O3-SiO2 support. Catal Commun 172:106550

    Article  CAS  Google Scholar 

  9. Zare M, Saleheen MS, Singh N, Uline MJ, Faheem M, Heyden A (2022) Liquid-phase effects on adsorption processes in heterogeneous catalysis. JACS Au 2:2119–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon Y, Rousseau R, Weber RS, Mei D, Lercher JA (2014) First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J Am Chem Soc 136:10287–10298

    Article  CAS  PubMed  Google Scholar 

  11. Nelson RC, Baek B, Ruiz P, Goundie B, Brooks A, Wheeler MC, Frederick BG, Grabow LC, Austin RN (2015) Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal 5:6509–6523

    Article  CAS  Google Scholar 

  12. Zhao Z, Bababrik R, Xue W, Li Y, Briggs NM, Nguyen D-T, Nguyen U, Crossley SP, Wang S, Wang B, Resasco DE (2019) Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat Catal 2:431–436

    Article  CAS  Google Scholar 

  13. Vrieze JE, Thybaut JW, Saeys M (2019) Role of keto–enol tautomerization in the copper-catalyzed hydrogenation of ketones. ACS Catal 9:3831–3839

    Article  Google Scholar 

  14. Yin D, Ji R, Zhang J, Yu S, Li L, Liu S, Jiang L, Liu Y, Song Z, Liu Y (2023) Activity enhancement of core–shell Pd@mCeO2 catalysts for phenol hydrogenation to cyclohexanone by tuning metal-support interactions. Fuel 333:126481

    Article  CAS  Google Scholar 

  15. Liu C, Wang J, Zhu P, Liu H, Zhang X (2022) Relating the performances of selective phenol hydrogenation with encapsulated palladium nanoparticles and surrounding distinct LTL-zeolite microenvironments. Chem Eng J 430:132589

    Article  CAS  Google Scholar 

  16. Vono LLR, Broicher C, Philippot K, Rossi LM (2021) Tuning the selectivity of phenol hydrogenation using Pd, Rh and Ru nanoparticles supported on ceria- and titania-modified silicas. Catal Today 381:126–132

    Article  CAS  Google Scholar 

  17. Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) Selective Phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 326:1250–1252

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Yu H, Fu Y, Liu X, Guo D, Li S, Tao S, Lyu Y, Wang X, Yu H, Yu S (2022) Effect of promoter in hierarchical hollow Pt/Beta catalysts on the hydrodeoxygenation of phenol. Fuel 317:123534

    Article  CAS  Google Scholar 

  19. Li F, Cao B, Zhu W, Song H, Wang K, Li C (2017) Hydrogenation of phenol over Pt/CNTs: The effects of Pt loading and reaction solvents. Catalysts 7:145–154

    Article  Google Scholar 

  20. Yan P, Tian P, Li K, Cohen S, Wang J, Yu X, Zhou S (2020) Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation. Chem Eng J 397:125484

    Article  CAS  Google Scholar 

  21. Ghampson IT, Sepúlveda C, Dongil AB, Pecchi G, García R, Fierro JLG, Escalona N (2016) Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of co catalysts. Catal Sci Technol 6:7289–7306

    Article  CAS  Google Scholar 

  22. Nie Y, Lin W, Zhang Y, Chen Y, Nie R (2022) Transfer hydrogenation of phenol over Co-CoOx/N-doped carbon: Boosted catalyst performance enabled by synergistic catalysis between Co(0) and Co(delta). Dalton Trans 51:15983–15989

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Zhao W, Rehman MU, Liu W, Xu Y, Huang H, Wang S, Zhao Y, Mei D, Ma X (2022) Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol. ACS Catal 12:4724–4736

    Article  CAS  Google Scholar 

  24. Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu Y-Y, Shi C, Liu J, Wang W, Wang A (2021) A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol. J Catal 396:324–332

    Article  CAS  Google Scholar 

  25. Kordouli E, Pawelec B, Kordulis C, Lycourghiotis A, Fierro JLG (2018) Hydrodeoxygenation of phenol on bifunctional Ni-based catalysts: Effects of Mo promotion and support. Appl Catal B 238:147–160

    Article  CAS  Google Scholar 

  26. Resende KA, Braga AH, Noronha FB, Hori CE (2019) Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts. Appl Catal B 245:100–113

    Article  CAS  Google Scholar 

  27. Shi Y, **ng E, Zhang J, **e Y, Zhao H, Sheng Y, Cao H (2019) Temperature-dependent selectivity of hydrogenation/hydrogenolysis during phenol conversion over Ni catalysts. ACS Sustain Chem Eng 7:9464–9473

    Article  CAS  Google Scholar 

  28. Zhu L, Ye S, Zhu J, Duan C, Li K, He G, Liu X (2022) Tartaric acid-assisted synthesis of well-dispersed Ni nanoparticles supported on hydroxyapatite for efficient phenol hydrogenation. ACS Sustain Chem Eng 10:10526–10536

    Article  CAS  Google Scholar 

  29. Yoosuk B, Tumnantong D, Prasassarakich P (2012) Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel 91:246–252

    Article  CAS  Google Scholar 

  30. Zhou H, Han B, Liu T, Zhong X, Zhuang G, Wang J (2017) Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO2 in aqueous media. Green Chem 19:3585–3594

    Article  CAS  Google Scholar 

  31. Zhao C, Zhang Z, Liu Y, Shang N, Wang H-J, Wang C, Gao Y (2020) Palladium nanoparticles anchored on sustainable chitin for phenol hydrogenation to cyclohexanone. ACS Sustain Chem Eng 8:12304–12312

    Article  CAS  Google Scholar 

  32. Ertas IE, Gulcan M, Bulut A, Yurderi M, Zahmakiran M (2016) Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation. Micropor Mesopor Mater 226:94–103

    Article  CAS  Google Scholar 

  33. He J, Lu X, Shen Y, **g R, Nie R, Zhou D, **a Q (2017) Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium. Mol Cataly 440:87–95

    Article  CAS  Google Scholar 

  34. Zhang X, Wang T, Ma L, Zhang Q, Jiang T (2013) Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127:306–311

    Article  CAS  PubMed  Google Scholar 

  35. He L, Niu Z, Miao R, Chen Q, Guan Q, Ning P (2019) Selective hydrogenation of phenol by the porous Carbon/ZrO2 supported Ni Co nanoparticles in subcritical water medium. J Clean Prod 215:375–381

    Article  CAS  Google Scholar 

  36. Chang A, Yang T, Chen M, Hsiao H, Yang C (2020) Hierarchical zeolites comprising orthogonally stacked bundles of zeolite nanosheets for catalytic and adsorption applications. J Hazard Mater 400:123241

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Wang J, Li X, Yang M, Wu Y (2022) Superhydrophobic Ru catalyst for highly efficient hydrogenation of phenol under mild aqueous conditions. Catalysts 12:995

    Article  CAS  Google Scholar 

  38. Lu J, Ma Z, Wei X, Zhang Q, Hu B (2020) Support morphology-dependent catalytic activity of the Co/CeO2 catalyst for the aqueous-phase hydrogenation of phenol. New J Chem 44:9298–9303

    Article  CAS  Google Scholar 

  39. Putra RDD, Trajano HL, Liu S, Lee H, Smith K, Kim CS (2018) In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni®. Chem Eng J 350:181–191

    Article  CAS  Google Scholar 

  40. Huynh T, Armbruster U, Kreyenschulte C, Nguyen L, Phan B, Nguyen D, Martin A (2016) Understanding the performance and stability of supported Ni-Co-based catalysts in phenol HDO. Catalysts 6:176

    Article  Google Scholar 

  41. Pan L, He Y, Niu M, Dan Y, Li W (2019) Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni-M/SiO2 (M = Ce Co, Sn, Fe) bimetallic catalysts. RSC Adv 9:21175–21185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonçalves VOO, Talon WHSM, Kartnaller V, Venancio F, Cajaiba J, Cabioc T, Clacens J-M, Richard F (2021) Hydrodeoxygenation of m-cresol as a depolymerized lignin probe molecule: Synergistic effect of NiCo supported alloys. Catal Today 377:135–144

    Article  Google Scholar 

  43. Blanco E, Dongil AB, Escalona N (2020) Synergy between Ni and Co nanoparticles supported on carbon in guaiacol conversion. Nanomaterials (Basel) 10:2199

    Article  CAS  PubMed  Google Scholar 

  44. Raikwar D, Majumdar S, Shee D (2021) Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts. Mol Cataly 499:111290

    Article  CAS  Google Scholar 

  45. Chen C, Zhou M, Liu P, Sharma BK, Jiang J (2020) Flexible NiCo-based catalyst for direct hydrodeoxygenation of guaiacol to cyclohexanol. New J Chem 44:18906–18916

    Article  CAS  Google Scholar 

  46. Liu M, Zhang J, Zheng L, Fan G, Yang L, Li F (2020) Significant promotion of surface oxygen vacancies on bimetallic CoNi nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustain Chem Eng 8:6075–6089

    Article  CAS  Google Scholar 

  47. Zhai Y, Chu M, Shang N, Wang C, Wang H, Gao Y (2020) Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels. Appl Surf Sci 506:144681

    Article  CAS  Google Scholar 

  48. Huynh TM, Armbruster U, Pohl M-M, Schneider M, Radnik J, Hoang D-L, Phan BMQ, Nguyen DA, Martin A (2014) Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic Nickel-based catalysts. ChemCatChem 6:1940–1951

    Article  CAS  Google Scholar 

  49. Song Q, Li J, Wang S, Liu J, Liu X, Pang L, Li H, Liu H (2019) Enhanced electrocatalytic performance through body enrichment of Co-based bimetallic nanoparticles in situ embedded porous N-doped carbon spheres. Small 15:1903395

    Article  CAS  Google Scholar 

  50. Shi Y, Ai L, Shi H, Gu X, Han Y, Chen J (2021) Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Front Chem Sci Eng 16:443–460

    Article  Google Scholar 

  51. Zada B, Yan L, Fu Y (2018) Effective conversion of cellobiose and glucose to sorbitol using non-noble bimetallic NiCo/HZSM-5 catalyst. Sci China Chem 61:1167–1174

    Article  CAS  Google Scholar 

  52. Lange JP (2015) Renewable feedstocks: The problem of catalyst deactivation and its mitigation. Angew Chem Int Ed Engl 54:13186–13197

    Article  CAS  PubMed  Google Scholar 

  53. **ong H, Pham HN, Datye AK (2014) Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem 16:4627–4643

    Article  CAS  Google Scholar 

  54. Kouva S, Honkala K, Lefferts L, Kanervo J (2015) Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol 5:3473–3490

    Article  CAS  Google Scholar 

  55. Resende KA, Hori CE, Noronha FB, Shi H, Gutierrez OY, Camaioni DM, Lercher JA (2017) Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO2. Appl Catal A 548:128–135

    Article  CAS  Google Scholar 

  56. Jiang J, Ding W, Zhang W, Li H (2022) Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature. Fuel 318:123529

    Article  CAS  Google Scholar 

  57. Sirous-Rezaei P, Jae J, Ha J-M, Ko CH, Kim JM, Jeon J-K, Park Y-K (2018) Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReOx/ZrO2 catalyst: zirconia and rhenium oxide as efficient dehydration promoters. Green Chem 20:1472–1483

    Article  CAS  Google Scholar 

  58. Chen Q, Cai C, Zhang X, Zhang Q, Chen L, Li Y, Wang C, Ma L (2020) Amorphous FeNi–ZrO2-catalyzed hydrodeoxygenation of lignin-derived phenolic compounds to naphthenic fuel. ACS Sustain Chem Eng 8:9335–9345

    Article  CAS  Google Scholar 

  59. Bui VN, Laurenti D, Delichère P, Geantet C (2011) Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Appl Catal B 101:246–255

    Article  CAS  Google Scholar 

  60. Irusta S, Cornaglia LM, Lombardo EA (2002) Hydrogen production using Ni–Rh on ZrO2 as potential low-temperature catalysts for membrane reactors. J Catalys 210:263–272

    Article  CAS  Google Scholar 

  61. Kondeboina M, Enumula SS, Gurram VRB, Chada RR, Burri DR, Kamaraju SRR (2018) Selective hydrogenation of biomass-derived ethyl levulinate to γ-valerolactone over supported Co catalysts in continuous process at atmospheric pressure. J Ind Eng Chem 61:227–235

    Article  CAS  Google Scholar 

  62. Teles CA, Rabelo-Neto RC, Jacobs G, Davis BH, Resasco DE, Noronha FB (2017) Hydrodeoxygenation of phenol over Zirconia-supported catalysts: The effect of metal type on reaction mechanism and catalyst deactivation. ChemCatChem 9:2850–2863

    Article  CAS  Google Scholar 

  63. Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87:266104

    Article  CAS  PubMed  Google Scholar 

  64. Guan Q, Zeng Y, Shen J, Chai X-S, Gu J, Miao R, Li B, Ning P (2016) Selective hydrogenation of phenol by phosphotungstic acid modified Pd/Ce-AlOx catalyst in high-temperature water system. Chem Eng J 299:63–73

    Article  CAS  Google Scholar 

  65. Huang Y, **a S, Ma P (2017) Effect of zeolite solid acids on the in situ hydrogenation of bio-derived phenol. Catal Commun 89:111–116

    Article  Google Scholar 

  66. Kumar A, Kumar J, Bhaskar T (2020) High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environ Res 186:109533

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, Liu J, He J, Wang L, Lei J (2020) Silica/titania composite-supported NiCo catalysts with combined catalytic effects for phenol hydrogenation under fast and mild conditions. Appl Catal A 591:117409

    Article  Google Scholar 

  68. Zhou Y, Liu L, Li G, Hu C (2021) Insights into the influence of ZrO2 crystal structures on methyl laurate hydrogenation over Co/ZrO2 catalysts. ACS Catal 11:7099–7113

    Article  CAS  Google Scholar 

  69. Yang H, Zeng Y, Zhou Y, Du X, Li D, Hu C (2022) One-step synthesis of highly active and stable Ni-ZrO2 catalysts for the conversion of methyl laurate to alkanes. J Catal 413:297–310

    Article  CAS  Google Scholar 

  70. Porwal G, Gupta S, Sreedhala S, Elizabeth J, Khan TS, Haider MA, Vinod CP (2019) Mechanistic insights into the pathways of phenol hydrogenation on Pd nanostructures. ACS Sustain Chem Eng 7:17126–17136

    Article  CAS  Google Scholar 

  71. Li G, Han J, Wang H, Zhu X, Ge Q (2015) Role of dissociation of phenol in its selective hydrogenation on Pt(111) and Pd(111). ACS Catal 5:2009–2016

    Article  CAS  Google Scholar 

  72. Chávez LM, Alonso F, Ancheyta J (2014) Vapor–liquid equilibrium of hydrogen–hydrocarbon systems and its effects on hydroprocessing reactors. Fuel 138:156–175

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 21576193 and 21176177)

Funding

This study is supported by the National Natural Science Foundation of China (Nos. 21576193 and 21176177) to Jixiang Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2230 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Z., Shu, S. et al. Hydrogenation of phenol to cyclohexanol and cyclohexanone on ZrO2-supported Ni-Co alloy in water. Reac Kinet Mech Cat 136, 937–952 (2023). https://doi.org/10.1007/s11144-023-02376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02376-1

Keywords

Navigation