Log in

Efficient reductive etherification of furfural into furfuryl ethyl ether on Pd/Nb2O5 nanomaterials

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Furfuryl ethyl ether (FEE), an important gasoline additive, is synthesized by a one-step reductive etherification of furfural (FF) by Nb2O5 nanowires loaded with Pd as catalysts. Compared with other materials, the catalyst had a suitable synergistic effect between the reductive sites Pd0 and the acidic sites of Nb2O5 nanowires, effectively improving the yield of FEE. In ethanol, at 453 K and under 1 MPa H2 pressure, the catalyst 1.0 wt% Pd/Nb2O5 showed excellent catalytic performance in the reductive etherification reaction, and the yield of FEE reached 87.7%, higher than Pd/C whose yield was 81%. This result showed a feasible way to simplify the FEE preparation process, thus reducing production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vanderhaegen B, Neven H, Daenen L, Verstrepen KJ, Verachtert H, Derdelinckx G (2004) Furfuryl ethyl ether: important aging flavor and a new marker for the storage conditions of beer. J Agric Food Chem 52(6):1661–1668. https://doi.org/10.1021/jf035412g

    Article  CAS  PubMed  Google Scholar 

  2. Cao Q, Zhang W, Luo S, Guo R, Xu D (2021) Synthesis of furanic ethers from furfuryl alcohol for biofuel production. Energy Fuels 35(15):12725–12733. https://doi.org/10.1021/acs.energyfuels.1c01061

    Article  CAS  Google Scholar 

  3. Parra-Melipán S, López V, Moya SA, Valdebenito G, Aranda B, Aguirre P (2021) Valorization of furfural using ruthenium (II) complexes containing phosphorus-nitrogen ligands under homogeneous transfer hydrogen condition. Mol Catal 513:111729. https://doi.org/10.1016/j.mcat.2021.111729

    Article  CAS  Google Scholar 

  4. Siddiqui N, Khatun R, Mishra VK, Khan TS, Samanta C, Bal R (2021) Selective transfer hydrogenation of biomass derived furanic molecules using cyclohexanol as a hydrogen donor over nanostructured Cu/MgO catalyst. Mol Catal 513:111812. https://doi.org/10.1016/j.mcat.2021.111812

    Article  CAS  Google Scholar 

  5. Li Z-F, Shen Y, Cui W-G, Zhang Q, Hu T-L (2021) MOF derived non-noble metal catalysts to control the distribution of furfural selective hydrogenation products. Mol Catal 513:111824. https://doi.org/10.1016/j.mcat.2021.111824

    Article  CAS  Google Scholar 

  6. Wu J, Yan X, Wang W, ** M, **e Y, Wang C (2021) Highly dispersed CoNi alloy embedded in n-doped graphitic carbon for catalytic transfer hydrogenation of biomass-derived furfural. Chem Asian J. https://doi.org/10.1002/asia.202100727

    Article  PubMed  PubMed Central  Google Scholar 

  7. Islam MJ, Granollers Mesa M, Osatiashtiani A, Manayil JC, Isaacs MA, Taylor MJ, Tsatsos S, Kyriakou G (2021) PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural. Appl Catal B 299:120652. https://doi.org/10.1016/j.apcatb.2021.120652

    Article  CAS  Google Scholar 

  8. Byun MY, Lee MS (2021) Effect of carboxylate stabilizers on the performance of Pt/C catalysts for furfural hydrogenation. J Environ Chem Eng 9(5):106293. https://doi.org/10.1016/j.jece.2021.106293

    Article  CAS  Google Scholar 

  9. Cao P, Lin L, Qi H, Chen R, Wu Z, Li N, Zhang T, Luo W (2021) Zeolite-encapsulated Cu nanoparticles for the selective hydrogenation of furfural to furfuryl alcohol. ACS Catal 11(16):10246–10256. https://doi.org/10.1021/acscatal.1c02658

    Article  CAS  Google Scholar 

  10. Lu B, An S, Song D, Su F, Yang X, Guo Y (2015) Design of organosulfonic acid functionalized organosilica hollow nanospheres for efficient conversion of furfural alcohol to ethyl levulinate. Green Chem 17(3):1767–1778. https://doi.org/10.1039/C4GC02161D

    Article  CAS  Google Scholar 

  11. Russo PA, Antunes MM, Neves P, Wiper PV, Fazio E, Neri F, Barreca F, Mafra L, Pillinger M, Pinna N, Valente AA (2014) Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion. J Mater Chem A 2(30):11813–11824. https://doi.org/10.1039/C4TA02320J

    Article  CAS  Google Scholar 

  12. Wang Z, Chen Q (2016) Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem 18(21):5884–5889. https://doi.org/10.1039/C6GC01206J

    Article  CAS  Google Scholar 

  13. Zhao D, Prinsen P, Wang Y, Ouyang W, Delbecq F, Len C, Luque R (2018) Continuous flow alcoholysis of furfuryl alcohol to alkyl levulinates using zeolites. ACS Sustain Chem Eng 6(5):6901–6909. https://doi.org/10.1021/acssuschemeng.8b00726

    Article  CAS  Google Scholar 

  14. Neves P, Lima S, Pillinger M, Rocha SM, Rocha J, Valente AA (2013) Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts. Catal Today 218–219:76–84. https://doi.org/10.1016/j.cattod.2013.04.035

    Article  CAS  Google Scholar 

  15. Natsir TA, Hara T, Ichikuni N, Shimazu S (2018) Kaolinite catalyst for the production of a biodiesel-based compound from biomass-derived furfuryl alcohol. ACS Appl Energy Mater 1(6):2460–2463. https://doi.org/10.1021/acsaem.8b00694

    Article  CAS  Google Scholar 

  16. Zhu S, Chen C, Xue Y, Wu J, Wang J, Fan W (2014) Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem 6(11):3080–3083. https://doi.org/10.1002/cctc.201402574

    Article  CAS  Google Scholar 

  17. Wang Y, Cui Q, Guan Y, Wu P (2018) Facile synthesis of furfuryl ethyl ether in high yield via the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chem 20(9):2110–2117. https://doi.org/10.1039/C7GC03887A

    Article  CAS  Google Scholar 

  18. Stucchi M, Alijani S, Manzoli M, Villa A, Lahti R, Galloni MG, Lassi U, Prati L (2020) A Pt–Mo hybrid catalyst for furfural transformation. Catal Today 357:122–131. https://doi.org/10.1016/j.cattod.2019.04.045

    Article  CAS  Google Scholar 

  19. Pizzi R, Van Putten R-J, Brust H, Perathoner S, Centi G, Van der Waal JC (2015) High-throughput screening of heterogeneous catalysts for the conversion of furfural to bio-based fuel components. Catalysts 5(4):2244–2257

    Article  CAS  Google Scholar 

  20. Tong Z, Gao R, Li X, Guo L, Wang J, Zeng Z, Deng Q, Deng S (2021) Highly controllable hydrogenerative ring rearrangement and complete hydrogenation of biobased furfurals over Pd/La2B2O7 (B = Ti, Zr, Ce). ChemCatChem. https://doi.org/10.1002/cctc.202101063

    Book  Google Scholar 

  21. Yeon Byun M, Sig Lee M (2021) Pt supported on hierarchical porous carbon for furfural hydrogenation. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2021.08.038

    Article  Google Scholar 

  22. Huang R, Kwon O, Lin C, Gorte RJ (2021) The effects of SMSI on m-Cresol hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J Catal 398:102–108. https://doi.org/10.1016/j.jcat.2021.04.012

    Article  CAS  Google Scholar 

  23. Zhang Z, Wang P, Wu Z, Yue C, Wei X, Zheng J, **ang M, Liu B (2020) Efficient synthesis of niobium pentoxide nanowires and application in ethanolysis of furfuryl alcohol. RSC Adv 10(10):5690–5696. https://doi.org/10.1039/D0RA00085J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Liu B, Truong J, Luo Z, Ford PC, Abu-Omar MM (2020) One-pot hydrodeoxygenation (HDO) of lignin monomers to C9 hydrocarbons co-catalysed by Ru/C and Nb2O5. Green Chem 22(21):7406–7416. https://doi.org/10.1039/D0GC01692F

    Article  CAS  Google Scholar 

  25. Lin M, An B, Takei T, Shishido T, Ishida T, Haruta M, Murayama T (2020) Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity. J Catal 389:366–374. https://doi.org/10.1016/j.jcat.2020.05.040

    Article  CAS  Google Scholar 

  26. **n Y, Dong L, Guo Y, Liu X, Hu Y, Wang Y (2019) Correlation of the catalytic performance with Nb2O5 surface properties in the hydrodeoxygenation of lignin model compound. J Catal 375:202–212. https://doi.org/10.1016/j.jcat.2019.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation of China (21802008) and the Nature Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB530004), Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ma, X., Yue, C. et al. Efficient reductive etherification of furfural into furfuryl ethyl ether on Pd/Nb2O5 nanomaterials. Reac Kinet Mech Cat 135, 1541–1552 (2022). https://doi.org/10.1007/s11144-022-02203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02203-z

Keywords

Navigation