Log in

Hydrogenolysis of glycerol to 1,3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work investigated the effect of texture properties of the Al2O3-based catalysts on the catalytic performance for glycerol hydrogenolysis to 1,3-propanediol (1,3-PDO) in fixed bed reactor. Three kinds of Al2O3 supports with different pore structures, namely rod-like (Al2O3-R), flake-like (Al2O3-F) and spindle-like (Al2O3-SP) were synthesized by hydrothermal crystallization method, and correspondingly catalysts were prepared by the incipient-wetness impregnation method. The properties of active components, Pt and WOx species, loaded on different Al2O3 supports were similar, which was confirmed by N2 adsorption–desorption isotherms, XRD, Raman spectroscopy, UV–Vis DRS spectroscopy, 27Al MAS NMR, SEM, HR-TEM, NH3-TPD, Py-FTIR, H2-TPR and XPS. Considering the similar active sites, the distinct reaction performance of the catalysts mainly results from the texture properties. Flake-like catalyst containing the two-dimensional nanosheets with open pore structure significantly enhances the accessibility of active sites to the glycerol molecules, which contributes to increasing the efficiency of catalysts. The high glycerol conversion of 80.5% and the 1,3-PDO yield of 38.2% were achieved under low Pt loading and high space velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, Luo J, Wang Y, Liu J, Zhao Y, Wang S, Ma X (2019) WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Appl Catal B 242:410–421. https://doi.org/10.1016/j.apcatb.2018.10.006

    Article  CAS  Google Scholar 

  3. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13–30. https://doi.org/10.1039/b710561d

    Article  CAS  Google Scholar 

  4. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549. https://doi.org/10.1039/b707343g

    Article  CAS  PubMed  Google Scholar 

  5. Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35(9):4661–4670. https://doi.org/10.1016/j.enpol.2007.04.003

    Article  Google Scholar 

  6. Zhu S, Zhu Y, Hao S, Chen L, Zhang B, Li Y (2011) Aqueous-phase hydrogenolysis of glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2. Catal Lett 142(2):267–274. https://doi.org/10.1007/s10562-011-0757-1

    Article  CAS  Google Scholar 

  7. Sharma RV, Kumar P, Dalai AK (2014) Selective hydrogenolysis of glycerol to propylene glycol by using Cu:Zn:Cr: Zr mixed metal oxides catalyst. Appl Catal A 477:147–156. https://doi.org/10.1016/j.apcata.2014.03.007

    Article  CAS  Google Scholar 

  8. Suprun W, Lutecki M, Haber T, Papp H (2009) Acidic catalysts for the dehydration of glycerol: activity and deactivation. J Mol Catal Chem 309(1–2):71–78. https://doi.org/10.1016/j.molcata.2009.04.017

    Article  CAS  Google Scholar 

  9. Zhu S, Zhu Y, Gao X, Mo T, Zhu Y, Li Y (2013) Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour Technol 130:45–51. https://doi.org/10.1016/j.biortech.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  10. Li X-L, Zhou Q, Pan S-X, He Y, Chang F (2020) A review of catalytic upgrading of biodiesel waste glycerol to valuable products. Curr Green Chem 7(3):259–266. https://doi.org/10.2174/2213346107666200108114217

    Article  CAS  Google Scholar 

  11. Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2(19):6688–6702. https://doi.org/10.1039/c3ta15384c

    Article  CAS  Google Scholar 

  12. Tomishige K, Nakagawa Y, Tamura M (2017) Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chem 19(13):2876–2924. https://doi.org/10.1039/c7gc00620a

    Article  CAS  Google Scholar 

  13. Aihara T, Miura H, Shishido T (2020) Investigation of the mechanism of the selective hydrogenolysis of C-O bonds over a Pt/WO3/Al2O3 catalyst. Catal Today 352:73–79. https://doi.org/10.1016/j.cattod.2019.10.008

    Article  Google Scholar 

  14. Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2012) Selective hydrogenolysis of glycerol to 1,3-propanediol catalyzed by Pt nanoparticles-AlOx/WO3. Chem Lett 41(12):1720–1722. https://doi.org/10.1246/cl.2012.1720

    Article  Google Scholar 

  15. Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. Chemsuschem 6(8):1345–1347. https://doi.org/10.1002/cssc.201300196

    Article  CAS  PubMed  Google Scholar 

  16. García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol. J Catal 323:65–75. https://doi.org/10.1016/j.jcat.2014.12.028

    Article  CAS  Google Scholar 

  17. Aihara T, Kobayashi H, Feng S, Miura H, Shishido T (2017) Effect of WO3 loading on the activity of Pt/WO3/Al2O3 catalysts in selective hydrogenolysis of glycerol to 1,3-propanediol. Chem Lett 46(10):1497–1500. https://doi.org/10.1246/cl.170601

    Article  CAS  Google Scholar 

  18. García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. Appl Catal B 204:260–272. https://doi.org/10.1016/j.apcatb.2016.11.016

    Article  CAS  Google Scholar 

  19. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Appl Catal B 105(1–2):117–127. https://doi.org/10.1016/j.apcatb.2011.04.001

    Article  CAS  Google Scholar 

  20. Zhou W, Zhao Y, Wang Y, Wang S, Ma X (2016) Glycerol hydrogenolysis to 1,3-propanediol on tungstate/zirconia-supported platinum: hydrogen spillover facilitated by Pt(1 1 1) formation. ChemCatChem 8(23):3663–3671. https://doi.org/10.1002/cctc.201600981

    Article  CAS  Google Scholar 

  21. Fan Y, Cheng S, Wang H, Ye D, **e S, Pei Y, Hu H, Hua W, Li ZH, Qiao M, Zong B (2017) Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol. Green Chem 19(9):2174–2183. https://doi.org/10.1039/c7gc00317j

    Article  CAS  Google Scholar 

  22. Zhao B, Liang Y, Liu L, He Q, Dong J (2020) Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Green Chem 22(23):8254–8259. https://doi.org/10.1039/d0gc03364b

    Article  CAS  Google Scholar 

  23. Ohtsuka Y, Takahashi Y, Noguchi M, Arai T, Takasaki S, Tsubouchi N, Wang Y (2004) Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer-Tropsch synthesis. Catal Today 89(4):419–429. https://doi.org/10.1016/j.cattod.2004.01.004

    Article  CAS  Google Scholar 

  24. McArdle S, Curtin T, Leahy JJ (2010) Hydrogenation of sunflower oil over platinum supported on silica catalysts: preparation, characterisation and catalytic activity. Appl Catal A 382(2):332–338. https://doi.org/10.1016/j.apcata.2010.05.018

    Article  CAS  Google Scholar 

  25. Hongmanorom P, Luengnaruemitchai A, Chollacoop N, Yoshimura Y (2017) Effect of the Pd/MCM-41 pore size on the catalytic activity and cis–trans selectivity for partial hydrogenation of canola biodiesel. Energy Fuels 31(8):8202–8209. https://doi.org/10.1021/acs.energyfuels.7b00832

    Article  CAS  Google Scholar 

  26. Sayari A, Crusson E, Kaliaguine S, Brown JR (1991) External surface areas of H-ZSM5 zeolites. Langmuir 7(2):314–317. https://doi.org/10.1021/la00050a019

    Article  CAS  Google Scholar 

  27. **ong L, Yao P, Liu S, Li S, Deng J, Jiao Y, Chen Y, Wang J (2019) Soot oxidation over CeO2-ZrO2 based catalysts: the influence of external surface and low-temperature reducibility. Mol Catal 467:16–23. https://doi.org/10.1016/j.mcat.2019.01.022

    Article  CAS  Google Scholar 

  28. Zhu S, Gao X, Zhu Y, Zhu Y, **ang X, Hu C, Li Y (2013) Alkaline metals modified Pt-H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B 140–141:60–67. https://doi.org/10.1016/j.apcatb.2013.03.041

    Article  CAS  Google Scholar 

  29. Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. J Catal 306:155–163. https://doi.org/10.1016/j.jcat.2013.06.026

    Article  CAS  Google Scholar 

  30. Zhu S, Gao X, Zhu Y, Li Y (2015) Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WOx/Al2O3 catalysts. J Mol Catal A 398:391–398. https://doi.org/10.1016/j.molcata.2014.12.021

    Article  CAS  Google Scholar 

  31. García-Fernández S, Gandarias I, Tejido-Núñez Y, Requies J, Arias PL (2017) Influence of the support of bimetallic platinum tungstate catalysts on 1,3-propanediol formation from glycerol. ChemCatChem 9(24):4508–4519. https://doi.org/10.1002/cctc.201701067

    Article  CAS  Google Scholar 

  32. Song K, Zhang H, Zhang Y, Tang Y, Tang K (2013) Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity. J Catal 299:119–128. https://doi.org/10.1016/j.jcat.2012.11.011

    Article  CAS  Google Scholar 

  33. Salazar JB, Falcone DD, Pham HN, Datye AK, Passos FB, Davis RJ (2014) Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2. Appl Catal A 482:137–144. https://doi.org/10.1016/j.apcata.2014.06.002

    Article  CAS  Google Scholar 

  34. Scheithauer M, Grasselli RK, Knozinger H (1998) Genesis and structure of WOx/ZrO2 solid acid catalysts. Langmuir 14(11):3019–3029. https://doi.org/10.1021/la971399g

    Article  CAS  Google Scholar 

  35. Ross-Medgaarden EI, Wachs IE (2007) Structural determination of bulk and surface tungsten oxides with UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy. J Phys Chem C 111(41):15089–15099. https://doi.org/10.1021/jp074219c

    Article  CAS  Google Scholar 

  36. Martinez A, Prieto G, Arribas M, Concepcion P, Sanchezroyo J (2007) Influence of the preparative route on the properties of WOx-ZrO2 catalysts: a detailed structural, spectroscopic, and catalytic study. J Catal 248(2):288–302. https://doi.org/10.1016/j.jcat.2007.03.022

    Article  CAS  Google Scholar 

  37. Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J Phys Chem B 103(4):630–640. https://doi.org/10.1021/jp983555d

    Article  CAS  Google Scholar 

  38. Yu Q, Yu T, Chen H, Fang G, Pan X, Bao X (2020) The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. J Energy Chem 41:93–99. https://doi.org/10.1016/j.jechem.2019.04.027

    Article  Google Scholar 

  39. Kwak J, Hu J, Kim D, Szanyi J, Peden C (2007) Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J Catal 251(1):189–194. https://doi.org/10.1016/j.jcat.2007.06.029

    Article  CAS  Google Scholar 

  40. Shi L, Deng GM, Li WC, Miao S, Wang QN, Zhang WP, Lu AH (2015) Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn Clusters for Propane dehydrogenation. Angew Chem Int Ed Engl 54(47):13994–13998. https://doi.org/10.1002/anie.201507119

    Article  CAS  PubMed  Google Scholar 

  41. Lei N, Zhao X, Hou B, Yang M, Zhou M, Liu F, Wang A, Zhang T (2019) Effective hydrogenolysis of glycerol to 1,3-propanediol over metal-acid concerted Pt/WOx/Al2O3 catalysts. ChemCatChem 11(16):3903–3912. https://doi.org/10.1002/cctc.201900689

    Article  CAS  Google Scholar 

  42. Aihara T, Miura H, Shishido T (2019) Effect of perimeter interface length between 2D WO3 monolayer domain and γ-Al2O3 on selective hydrogenolysis of glycerol to 1,3-propanediol. Catal Sci Technol 9(19):5359–5367. https://doi.org/10.1039/c9cy01385g

    Article  CAS  Google Scholar 

  43. ten Dam J, Djanashvili K, Kapteijn F, Hanefeld U (2013) Pt/Al2O3 catalyzed 1,3-propanediol Formation from Glycerol using Tungsten additives. ChemCatChem 5(2):497–505. https://doi.org/10.1002/cctc.201200469

    Article  CAS  Google Scholar 

  44. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359–361. https://doi.org/10.1039/b407378a

    Article  CAS  Google Scholar 

  45. Kim TY, Park DS, Choi Y, Baek J, Park JR, Yi J (2012) Preparation and characterization of mesoporous Zr-WOx/SiO2 catalysts for the esterification of 1-butanol with acetic acid. J Mater Chem 22(19):10021. https://doi.org/10.1039/c2jm30904a

    Article  CAS  Google Scholar 

  46. Kuba S, Che M, Grasselli RK, Knozinger H (2003) Evidence for the formation of W5+ centers and OH groups upon hydrogen reduction of platinum-promoted tungstated zirconia catalysts. J Phys Chem B 107(15):3459–3463. https://doi.org/10.1021/jp022313h

    Article  CAS  Google Scholar 

  47. Zhou W, Li Y, Wang X, Yao D, Wang Y, Huang S, Li W, Zhao Y, Wang S, Ma X (2020) Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis. J Catal 388:154–163. https://doi.org/10.1016/j.jcat.2020.05.019

    Article  CAS  Google Scholar 

  48. Lei N, Miao Z, Liu F, Wang H, Pan X, Wang A, Zhang T (2020) Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction. Chin J Catal 41(8):1261–1267. https://doi.org/10.1016/s1872-2067(20)63549-5

    Article  CAS  Google Scholar 

  49. Wang J, Yang M, Wang A (2020) Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. Chin J Catal 41(9):1311–1319. https://doi.org/10.1016/s1872-2067(20)63586-0

    Article  CAS  Google Scholar 

  50. Miao G, Shi L, Zhou Z, Zhu L, Zhang Y, Zhao X, Luo H, Li S, Kong L, Sun Y (2020) Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol. ACS Catal 10(24):15217–15226. https://doi.org/10.1021/acscatal.0c04167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work was provided by the key research project of Shanxi province, China (No.201903D121033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Niu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1015 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Niu, P., Guo, H. et al. Hydrogenolysis of glycerol to 1,3-propanediol over a Al2O3-supported platinum tungsten catalyst with two-dimensional open structure. Reac Kinet Mech Cat 133, 173–189 (2021). https://doi.org/10.1007/s11144-021-01988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01988-9

Keywords

Navigation