Log in

Rayleigh Wave Scattering by a Near-Surface Inclusion in Elastic Half-Space

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the problem of Rayleigh wave scattering by an inclusion of small wave sizes in the form of an oblate ellipsoid located under the free surface of an elastic isotropic half-space. The material parameters of the filling of the inclusion can have an arbitrary contrast with respect to the material parameters of the elastic medium containing the inhomogeneity. The solution of the problem is based on the formalism of the Green’s functions of a force source in a half-space and the reciprocity theorem for an elastic medium. The examples demonstrate the possibility of diagnosing the presence of a cavity, as well as estimating its sizes and orientation by analyzing the features of the distribution of the displacement vector projection amplitudes in the scattered field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Averbakh, B. N. Bogolyubov, Y. A. Dubovoi, et al., Acoust. Phys., 48, 121–127 (2002). https://doi.org/10.1134/1.1460944

    Article  ADS  Google Scholar 

  2. A. V. Lebedev and A. I. Malekhanov, Radiophys. Quantum Electron., 46, No. 7, 523–538 (2003). https://doi.org/10.1023/B:RAQE.0000019868.73241.b1

    Article  ADS  Google Scholar 

  3. V. S. Averbakh, A. V. Lebedev, S. A. Manakov, and V. I. Talanov, Acoust. Phys., 58, No. 5, 596–602 (2012). https://doi.org/10.1134/S106377101205003X

    Article  ADS  Google Scholar 

  4. V. S. Averbakh, A. I. Kon’kov, A. V. Lebedev, et al., Tekhnol. Seismorazv., No. 2, 119–123 (2015). https://doi.org/10.18303/1813-4254-2015-2-119-123

  5. V. S. Averbakh, N. N. Gribov, A. I. Kon’kov, et al., Bull. Rus. Acad. Sci. Phys., 80, No. 10, 1185–1190 (2016). https://doi.org/10.3103/S1062873816100051

  6. H. Hönl, A. W. Maue, and K. Westpfahl, in: S. Flügge, ed., Theorie der Beugung, Springer, Berlin (1961), pp. 218–573.

    Google Scholar 

  7. A. V. Razin and A. L. Sobisevich, Geoacoustics of Layered Media [in Russian], Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow (2012).

  8. Methodology for Ensuring the Protection of Urban Territories from Natural and Manmade Impacts, ed. by E. V. Koposova [in Russian], Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod (2013).

  9. R. C. Benson and L. B. Yuhr, Site Characterization in Karst and Pseudokarst Terraines, Springer, Dordrecht, Netherlands (2016). https://doi.org/10.1007/978-94-017-9924-9_16

    Article  Google Scholar 

  10. M. S. Zhdanov, Electric Prospecting [in Russian], Nedra, Moscow (1986).

    Google Scholar 

  11. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook. Tools For Seismic Analysis in Porous Media, 2nd edition, Cambridge University Press, Cambridge (2009).

  12. K. D. Butler, in: Proc. 3rd Intern. Conf. Environmental and Engineering Geophysics (ICEEG), Science Press USA, Monmouth Junction, New Jersey, USA, pp. 578–584.

  13. V. V. Krylov, in: Proc. 27th Int. Conf. Noise and Vibration Eng. September 19–21, 2016, Leuven, Belgium, pp. 1919–1926.

  14. S. L. C. Morton, S. L. Peterie, J. M. Ivanov, et al., SEG Int. Exposition and Annual Meeting, September 24–29, 2017, Houston, Texas, USA, pp. 5458–5464.

  15. J. **a, J. E. Nyquist, Y. Xu., et al., J. Appl. Geophys., 62, 244–253 (2007). https://doi.org/10.1016/j.jappgeo.2006.12.002

    Article  ADS  Google Scholar 

  16. W. Jiang and J. Zhang, Geophys. Prospecting, 65, 1138–1154 (2017). https://doi.org/10.1111/1365-2478.12477

    Article  ADS  Google Scholar 

  17. S. D. Sloan, R. D. Miller, and D. W. Steeples, Geophysics, 86, No. 3, WA49–WA57 (2021). https://doi.org/10.1190/geo2020-0959.1

  18. V. P. Dokuchaev and A. V. Razin, Fiz. Zemli, 10, 81–87 (1990).

    Google Scholar 

  19. A. V. Razin, Radiophys. Quantum Electron., 53, No. 7, 417–431 (2010). https://doi.org/10.1007/s11141-010-9239-3

    Article  ADS  Google Scholar 

  20. S. Nazarian, K. H. Stokoe, and W. R. Hudson, Transportation Res. Record, 930, 38–45 (1983).

    Google Scholar 

  21. C. B. Park, R. D. Miller, and J. **a, Geophysics, 64, No. 3, 800–808 (1999).

    Article  ADS  Google Scholar 

  22. J. **a, C. B. Park, and R. D. Miller, Geophysics, 64, No. 3, 691–700 (1999).

    Article  ADS  Google Scholar 

  23. R. Miller, J. **a, C. B. Park, and J. M. Ivanov, The Leading Edge, 441–568 (2008). https://doi.org/10.1190/tle27040568.1

  24. A. V. Lebedev and S. A. Manakov, Acoust. Phys., 68, No. 1, 58–70 (2022). https://doi.org/10.1134/S1063771022010067

    Article  ADS  Google Scholar 

  25. A. K. Mal and L. Knopoff, J. Inst. Math. Appl. 3, 376–387 (1967). https://doi.org/10.1093/imamat/3.4.376

    Article  Google Scholar 

  26. J. D. Eshelby, Proc. Royal Soc. London, A241., 376–396 (1957). https://doi.org/10.1098/rspa.1957.0133

    Article  ADS  MathSciNet  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford (1959).

    Google Scholar 

  28. E. Skudrzyk, The Foundations of Acoustics, Springer–Verlag, Wien (1971).

    Book  Google Scholar 

  29. A. V. Lebedev, L. A. Ostrovskii, and A. M. Sutin, Acoust. Phys., 51 (Suppl. 1), S88–S101 (2005). https://doi.org/10.1134/1.2133957

    Article  ADS  Google Scholar 

  30. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw Hill, New York, NY (1953).

    Google Scholar 

  31. E. A. Zabolotskaya, Yu. A. Ilinskii, T. A. Hay, and M. F. Hamilton, J. Acoust. Soc. Am., 131, No. 3, 1831–1842 (2012). https://doi.org/10.1121/1.3672652

    Article  ADS  Google Scholar 

  32. A. V. Lebedev and A. M. Sutin, Acoust. Phys., 42, No, 6, 716–722 (1996).

    ADS  Google Scholar 

  33. A. V. Lebedev and I. A. Beresnev, Geophysics, 69, No. 4, 968–977 (2004). https://doi.org/10.1190/1.1778240

    Article  ADS  Google Scholar 

  34. L. R. Johnson, Geophys. J. R. Astr. Soc., 37, 99–131 (1974).

    Article  ADS  Google Scholar 

  35. I. N. Sneddonn, Fourier Transforms, McGraw Hill, New York, NY (1951).

    Google Scholar 

  36. R. J. Urick, Principles of Underwater Sound, McGraw-Hill, New York, NY (1967).

    Google Scholar 

  37. A. V. Levedev and S. A. Manakov, in: Proc. of the XXXIV Session of the Russian Acoustic Society “Geoacoustics,” February 14–18, 2022 [in Russian], Moscow, Russia, pp. 197–203.

  38. J. E. White, Underground sound, application of seismic waves, Elsevier, New York (1983).

    Google Scholar 

  39. V. S. Averbakh, V. V. Artel’nyi, B. N. Bogolyubov, et al., Acoust. Phys., 47, No. 6, 640–643 (2001). https://doi.org/10.1134/1.1418886

  40. V. S. Averbakh, A. V. Lebedev, A. P. Maryshev, et al., Acoust. Phys., 54, 526–537 (2008). https://doi.org/10.1134/S1063771008040131

    Article  ADS  Google Scholar 

  41. https://github.com/geodynamics/sw4

  42. B. Sjögreen and N. A. Petersson, J. Sci. Comp., 52, 17–48 (2012). https://doi.org/10.1007/s10915-011-9531-1

    Article  Google Scholar 

  43. A. J. Rodgers, A. Pitarka, N. A. Petersson, et al., Geophys. Res. Lett., 45, No. 2, 739–747 (2018). https://doi.org/10.1002/2017GL076505

    Article  ADS  Google Scholar 

  44. A. Nayak and D. S. Dreger, Geophys. J. Int., 214, No. 3, 1808–1829 (2018). https://doi.org/10.1093/gji/ggy202

    Article  ADS  Google Scholar 

  45. A. V. Gorbatikov and A. A. Tsukanov, Fiz. Zemli, No. 4, 354–369 (2011). https://doi.org/10.1134/S1069351311030013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 5–6, pp. 483–504, May–June 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_05_483

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V., Manakov, S.A. & Dubovoy, D.V. Rayleigh Wave Scattering by a Near-Surface Inclusion in Elastic Half-Space. Radiophys Quantum El 66, 441–459 (2023). https://doi.org/10.1007/s11141-024-10306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-024-10306-x

Navigation