Log in

Interference of the Electric and Envelope Areas of Ultrashort Light Pulses in Quantum Systems

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In recent years, significant progress has been made in generating ultrashort electromagnetic pulses of single-cycle and subcycle duration. Unipolar pulses contain one half-cycle of the field and have a nonzero electric area. The conventional concepts of interaction of electromagnetic radiation with matter (in particular, interference) used in the case of multicycle pulses are not applicable to unipolar ones. This minireview discusses the latest results on the effects of extremely short low-amplitude pulses (when the perturbation theory is valid) on resonant media and individual quantum systems (atoms, molecules, and nanostructures) from the viewpoint of the recently introduced concept of “interference” of the areas of short light pulses (electric and envelope areas). We provide a simple relation showing that in order to compare the effects of multicycle bipolar and subcycle unipolar pulses on micro-objects, one should compare their areas, not energies. By numerically solving the Maxwell–Bloch equations, we study the features of area interference are studied beyond the limits of perturbation theory. It is shown that, after the collision of a pair of π-like ultrashort pulses, polarization structures and population difference gratings with nonharmonic multipeak structures are formed inside the medium. The possibility of experimentally determining the electric area of unipolar pulses through interference of their areas is discussed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A.Akhmanov and S.Yu.Nikitin, Physical Optics, Clarendon Press Oxford, Oxford (1997).

  2. M. Born and E.Wolf, Principles of Optics, Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108769914

  3. Yu. I.Ostrovsky, Holography [in Russian], Nauka, Leningrad (1970).

  4. Yu. I.Ostrovsky, M.M. Butusov, and G.V.Ostrovskaya, Interferometry by Holography, Springer, Berlin, Heidelberg (1980).https://doi.org/10.1007/978-3-540-39008-4

  5. R. J. Collier, C. B. Burckhardt, and L. Ho. Lin, Optical Holography, Academic Press, New York, NY, and London (1971). https://doi.org/10.1016/B978-0-12-181050-4.X5001-X

  6. H. J. Eichler, P. Gunter, and D. W.Pohl, Laser-Induced Dynamic Gratings, Springer, Berlin, Heidelberg (1981)https://doi.org/10.1007/978-3-540-39662-8

  7. H. Y. Ling, Y.-Q. Li, and M. **ao, Phys. Rev. A, 57, No. 2, 1338–1344 (1998). https://doi.org/10.1103/PhysRevA.57.1338

    Article  ADS  Google Scholar 

  8. M. Mitsunaga and N. Imoto, Phys. Rev. A, 59, No. 6, 4773–4776 (1999). https://doi.org/10.1103/PhysRevA.59.4773

    Article  ADS  Google Scholar 

  9. A. W. Brown and M. **ao, Opt. Lett., 30, No. 7, 699–701 (2005). https://doi.org/10.1364/OL.30.000699

    Article  ADS  Google Scholar 

  10. Z. Zhang, S. Liang, F. Li, et al., Optica, 7, No. 5, 455–462 (2020). https://doi.org/10.1364/OPTICA.390386

    Article  ADS  Google Scholar 

  11. J.Yuan, S.Dong, H. Zhang, et al., Opt. Express, 29, No. 2, 2712–2719 (2021). https://doi.org/10.1364/OE.418000

    Article  ADS  Google Scholar 

  12. T. Jones, W. K.Peters, A.Efimov, et al., Opt. Express, 29, No. 8, 11394–11405 (2021). https://doi.org/10.1364/OE.417293

  13. R.P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3, Quantum Mechanics, Basic Books, New York, NY (2010); also available online at http://www.feynmanlectures.caltech.edu/III_toc.html

  14. E. B. Aleksandrov, Sov. Phys. Usp., 15, No. 4, 436–451 (1973) https://doi.org/10.1070/PU1973v015n04ABEH004991

    Article  ADS  Google Scholar 

  15. E. B. Aleksandrov, N. I.Kaliteevski˘i, and M. P.Cha˘ika, Sov. Phys. Usp., 22, No. 9, 760–767 (1979). https://doi.org/10.1070/PU1979v022n09ABEH005611

  16. M. Fleischhauer, A. Imamoglu, and J.P.Marangos, Rev. Mod. Phys., 77, No. 2, 633–673 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  17. F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, No. 1, 163–234 (2009). https://doi.org/10.1103/RevModPhys.81.163

    Article  ADS  Google Scholar 

  18. F. Calegari, G. Sansone, S. Stagira, et al., J. Phys. B: At. Mol. Opt. Phys., 49, No. 6, 062001 (2016). https://doi.org/10.1088/0953-4075/49/6/062001

    Article  ADS  Google Scholar 

  19. J. Biegert, F. Calegari, N. Dudovich, et al., J. Phys. B: At. Mol. Opt. Phys., 54, No. 7, 070201 (2021). https://doi.org/10.1088/1361-6455/abcdef

    Article  Google Scholar 

  20. K. Midorikawa, Nature Photon., 16, 267–278 (2022). https://doi.org/10.1038/s41566-022-00961-9

    Article  ADS  Google Scholar 

  21. M. Th.Hassan, T. T. Luu, A. Moulet, et al., Nature, 530, 66–70 (2016). https://doi.org/10.1038/nature16528

    Article  ADS  Google Scholar 

  22. A. I. Maimistov, Quantum Electron., 40, No. 9, 756–781 (2010). https://doi.org/10.1070/QE2010v040n09ABEH014396

    Article  ADS  Google Scholar 

  23. A. M. Zheltikov, Phys.Usp., 61, No. 10, 1016–1025 (2018) https://doi.org/10.3367/UFNe.2017.06.038155

    Article  ADS  Google Scholar 

  24. A. M. Zheltikov, Phys.Usp., 60, No. 11, 1087–1120 (2017) https://doi.org/10.3367/UFNe.2017.08.038198

    Article  ADS  Google Scholar 

  25. A. M. Zheltikov, Phys.Usp., 64, No. 4, 370–385 (2021) https://doi.org/10.3367/UFNe.2020.11.038884

    Article  ADS  Google Scholar 

  26. S.V. Sazonov, Opt. Spectrosc., 130, No. 10, 549–558 (2022). https://doi.org/10.1134/S0030400X22120037

    Article  ADS  Google Scholar 

  27. D. Hui, H. Alqattan, S.Yamada, et al., Nature Photon., 16, 33–37 (2022). https://doi.org/10.1038/s41566-021-00918-4

  28. P.Peng, Y.Mi, M. Lytova, et al., Nature Photon., 16, 45–51 (2022). https://doi.org/10.1038/s41566-021-00907-7

    Article  ADS  Google Scholar 

  29. N. N. Rosanov, Opt. Spectrosc., 107, No. 5, 721–725 (2009). https://doi.org/10.1134/S0030400X09110095

    Article  Google Scholar 

  30. N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, Phys. Usp., 61, No. 12, 1227–1233 (2018). https://doi.org/10.3367/UFNe.2018.07.038386

    Article  ADS  Google Scholar 

  31. E. M. Belenov, P. G. Kryukov, A. V. Nazarkin, et al., JETP Lett., 47, No. 9, 523–525 (1988).

    ADS  Google Scholar 

  32. E. M. Belenov and A. V. Nazarkin, JETP Lett., 51, No. 5, 288–292 (1990).

    ADS  Google Scholar 

  33. E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovski˘i, Sov. Phys. JETP, 73, No. 3, 422–428 (1991).

  34. E. M. Belenov, V. A. Isakov, and A. V. Nazarkin, Quantum Electron., 23, No. 11, 911–918 (1993). https://doi.org/10.1070/QE1993v023n11ABEH003222

    Article  ADS  Google Scholar 

  35. R. M. Arkhipov, M.V.Arkhipov, and N.N.Rosanov, Quantum Electron., 50, No. 9, 801–815 (2020). https://doi.org/10.1070/QEL17348

    Article  ADS  Google Scholar 

  36. R. M. Arkhipov, JETP Lett., 113, No. 10, 611–621 (2021). https://doi.org/10.1134/S0021364021100040

    Article  ADS  Google Scholar 

  37. R. Arkhipov, M.Arkhipov, A.Pakhomov, et al., Laser Phys. Lett., 19, No. 4, 043001 (2022). https://doi.org/10.1088/1612-202X/ac5522

  38. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., JETP Lett., 117, No. 1, 8–23 (2023). https://doi.org/10.1134/S0021364022602652

  39. J. D. Jackson, Classical Electrodynamics, Wiley, Hoboken, NY (1997).

    Google Scholar 

  40. E. G. Bessonov, Sov. Phys. JETP, 53, No. 3, 433–436 (1981).

    ADS  Google Scholar 

  41. N. N. Rosanov, Opt. Spectrosc., 127, No. 6, 1050–1052 (2019). https://doi.org/10.1134/S0030400X19120208

    Article  Google Scholar 

  42. H. C.Wu and J.Meyer-ter-Vehn, Nature Photon., 6, 304–307 (2012). https://doi.org/10.1038/nphoton.2012.76

    Article  ADS  Google Scholar 

  43. J. Xu, B. Shen, X. Zhang, et al., Sci. Rep., 8, 2669 (2018). https://doi.org/10.1038/s41598-018-21052-2

    Article  ADS  Google Scholar 

  44. Q.**n, Y.Wang, X.Yan, B.Eliasson, Phys. Rev. E, 107, 035201 (2023). https://doi.org/10.1103/PhysRevE.107.035201

    Article  ADS  Google Scholar 

  45. M. I. Bakunov, A. V. Maslov, and M. V.Tsarev, Phys. Rev. A, 95, No. 6, 063817 (2017). https://doi.org/10.1103/PhysRevA.95.063817

    Article  ADS  Google Scholar 

  46. A. V. Bogatskaya, E. A.Volkova, and A.M.Popov, Phys. Rev. E, 104, No. 2, 025202 (2021). https://doi.org/10.1103/PhysRevE.104.025202

    Article  ADS  Google Scholar 

  47. A. V. Bogatskaya, E. A.Volkova, and A.M.Popov, Phys. Rev. E, 105, No. 5, 055203 (2022). https://doi.org/10.1103/PhysRevE.105.055203

    Article  ADS  Google Scholar 

  48. Y. Shou, R. Hu, Z.Gong, et al., New J. Phys., 23, No. 5, 053003 (2021). https://doi.org/10.1088/1367-2630/abf612

  49. S.V. Sazonov and N.V.Ustinov, JETP Lett., 114, No. 7, 380–386 (2021). https://doi.org/10.1134/S0021364021190103

    Article  ADS  Google Scholar 

  50. S.V. Sazonov, Laser Phys. Lett., 18, No. 10, 105401 (2021). https://doi.org/10.1088/1612-202X/ac22b6

    Article  ADS  Google Scholar 

  51. A. B. Plachenov and N.N.Rosanov, Radiophys. Quantum Electron., 65, No. 12, 911–921 (2023). https://doi.org/10.1007/s11141-023-10267-7

    Article  ADS  Google Scholar 

  52. N. N. Rosanov, Phys. Usp., 66, No. 10, 1059–1064 (2023). https://doi.org/10.3367/UFNr.2022.12.039297

    Article  ADS  Google Scholar 

  53. R. M. Arkhipov, A.V.Pakhomov, M. V. Arkhipov, et al., Opt. Lett., 44, No. 5, 1202–1205 (2019). https://doi.org/10.1364/OL.44.001202

    Article  ADS  Google Scholar 

  54. R. Arkhipov, A.Pakhomov, M. Arkhipov, et al., Opt. Express, 28, No. 11, 17020–17034 (2020). https://doi.org/10.1364/OE.393142

    Article  ADS  Google Scholar 

  55. N. Rosanov, D.Tumakov, M. Arkhipov, and R. Arkhipov, Phys. Rev. A, 104, No. 6, 063101 (2021). https://doi.org/10.1103/PhysRevA.104.063101

    Article  ADS  Google Scholar 

  56. S. L. McCall and E. L.Hahn, Phys. Rev., 183, No. 2, 457–485 (1969). https://doi.org/10.1103/PhysRev.183.457

    Article  ADS  Google Scholar 

  57. P. G. Kruykov and V. S. Letokhov, Sov. Phys. Usp., 12, 641–672 (1970).

    Article  ADS  Google Scholar 

  58. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms, Wiley, New York, NY (1975).

    Google Scholar 

  59. I.D.Abella, N.A.Kurnit, and S.R.Hartmann, Phys. Rev., 141, No. 1, 391–406 (1966). https://doi.org/10.1103/PhysRev.141.391

    Article  ADS  Google Scholar 

  60. E. I. Shtyrkov, V. S. Lobkov, and N.G.Yarmukhametov, JETP Lett., 27, No. 12, 648–651 (1978).

    ADS  Google Scholar 

  61. S. A. Moiseev and E. I. Shtyrkov, Sov. Journ. Quantum Electron., 21, No. 4, 403–406 (1991). https://doi.org/10.1070/QE1991v021n04ABEH003819

    Article  ADS  Google Scholar 

  62. E. I. Shtyrkov, Opt. Spectrosc., 114, No. 1, 96–103 (2013). https://doi.org/10.1134/S0030400X13010232

    Article  ADS  Google Scholar 

  63. A.Yu.Parkhomenko and S.V. Sazonov, JETP Lett., 67, No. 11, 934–939 (1998).https://doi.org/10.1134/1.567770

  64. A.Yu.Parkhomenko and S.V. Sazonov, Opt. Spectrosc., 90, No. 5, 707–714 (2001).https://doi.org/10.1134/1.1374659

  65. S.V. Sazonov, Opt. Spectrosc., 94, No. 3, 400–410 (2003). https://doi.org/10.1134/1.1563686

    Article  ADS  Google Scholar 

  66. S.V. Sazonov and A. F. Sobolevskii, JETP, 96, No. 5, 807–815 (2003). https://doi.org/10.1134/1.1581935

    Article  ADS  Google Scholar 

  67. N. V. Znamenskiǐ and S.V. Sazonov, JETP Lett., 85, No. 8, 358–363 (2007). https://doi.org/10.1134/S0021364007080036

    Article  ADS  Google Scholar 

  68. N. V. Znamenskiǐ and S.V. Sazonov, Opt. Spectrosc., 104, No. 3, 378–390 (2008). https://doi.org/10.1134/S0030400X08030119

    Article  ADS  Google Scholar 

  69. R. M.Arkhipov, M.V.Arkhipov, I. Babushkin, et al., Opt. Lett., 41, No. 21, 4983–4986 (2016). https://doi.org/10.1364/OL.41.004983

    Article  ADS  Google Scholar 

  70. R. M. Arkhipov, A.V.Pakhomov, M. V. Arkhipov, et al., Sci. Rep., 7, 12467 (2017). https://doi.org/10.1038/s41598-017-12267-w

    Article  ADS  Google Scholar 

  71. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., Laser Phys. Lett., 14, No. 9, 095402 (2017). https://doi.org/10.1088/1612-202X/aa7d30

  72. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, and N. N. Rosanov, Quantum Electron., 49, No. 10, 958–962 (2019). https://doi.org/10.1070/QEL17024

    Article  ADS  Google Scholar 

  73. R. Arkhipov, A.Pakhomov, M. Arkhipov, et al., Sci. Rep., 11, 1961 (2021). https://doi.org/10.1038/s41598-021-81275-8

    Article  Google Scholar 

  74. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., Opt. Spectrosc., 129, No. 6, 605–611 (2021). https://doi.org/10.1134/S0030400X21050039

  75. R. M. Arkhipov, M.V.Arkhipov, and N.N.Rosanov, JETP Lett., 111, No. 9, 484–488 (2020). https://doi.org/10.1134/S0021364020090040

    Article  ADS  Google Scholar 

  76. R. M.Arkhipov, M.V.Arkhipov, I. Babushkin, et al., JETP Lett., 114, No. 5, 250–255 (2021). https://doi.org/10.1134/S002136402117001X

    Article  ADS  Google Scholar 

  77. R. Arkhipov, M.Arkhipov, A.Pakhomov, and N. Rosanov, Laser Phys., 32, No. 6, 066002 (2002). https://doi.org/10.1088/1555-6611/ac6ace

    Article  ADS  Google Scholar 

  78. M. V. Arkhipov, R.M.Arkhipov, and N.N.Rosanov, Opt. Spectrosc., 130, No. 9, 1121–1125 (2022). https://doi.org/10.21883/EOS.2022.09.54831.3765-22

  79. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., Opt. Spectrosc., 130, No. 11, 1443–1449 (2022). https://doi.org/10.21883/EOS.2022.11.55103.4135-22

  80. O. O. Diachkova, R. M. Arkhipov, M.V.Arkhipov, et al., Opt. Commun., 538, 129475 (2023). https://doi.org/10.1016/j.optcom.2023.129475

  81. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford (1991).

    Google Scholar 

  82. O. O. Diachkova, R. M. Arkhipov, M.V.Arkhipov, et al., Laser Phys., 33, No. 4, 045301 (2023). https://doi.org/10.1088/1555-6611/acc026

  83. E. I. Shtyrkov and V.V. Samartsev, Electromagnetic Superradiance [in Russian], Kazan Branch of the USSR Academy of Sciences, Kazan (1975), pp. 398–426.

  84. V. V. Samartsev and E. I. Shtyrkov, Fiz. Tverd. Tela [in Russian], 18, No. 10, 3140–3141 (1976).

  85. E. I. Shtyrkov and V.V. Samartsev, Opt. Spektrosk. [in Russian], 40, No. 2, 392–393 (1976).

  86. R. M. Arkhipov, M.V.Arkhipov, and N.N.Rosanov, Opt. Spectrosc., 130, No. 7, 895–898 (2022). https://doi.org/10.21883/EOS.2022.07.54728.3318-22

  87. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., Opt. Spectrosc., 123, No. 4, 610–614 (2017). https://doi.org/10.1134/S0030400X17100046

  88. R. M. Arkhipov, M.V.Arkhipov, A. V.Pakhomov, et al., Opt. Spectrosc., 124, No. 4, 541–548 (2018). https://doi.org/10.1134/S0030400X18040045

  89. A.Yariv, Quantum Electronics, Wiley, New York, NY (1975).

    Google Scholar 

  90. M. V. Arkhipov, A.N.Tsypkin, M. Zhukova, et al., JETP Lett., 115, No. 1, 1–6 (2022). https://doi.org/10.1134/S0021364022010015

    Article  ADS  Google Scholar 

  91. R. M. Arkhipov, M.V.Arkhipov, S. V. Fedorov, and N.N.Rosanov, Opt. Spectrosc., 130, No. 13, 2020–2025 (2022). https://doi.org/10.21883/OS.2022.13.53984.2512-21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, No. 4, pp. 317–336, April 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_04_317

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., V.Pakhomov, A. et al. Interference of the Electric and Envelope Areas of Ultrashort Light Pulses in Quantum Systems. Radiophys Quantum El 66, 286–303 (2023). https://doi.org/10.1007/s11141-024-10295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-024-10295-x

Navigation