Log in

Pharmacological and Therapeutic Potential of Cucumis callosus: a Novel Nutritional Powerhouse for the Management of Non-communicable Diseases

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Cucumis callosus (Kachri) is an under-exploited fruit of the Cucurbitaceae family, distributed majorly in the arid regions of India in the states of Haryana, Rajasthan, and Gujarat. The fruit is traditionally used by the native people at a small scale by home-level processing. It is a perennial herb that has been shown to possess therapeutic potential in certain disorders. In several studies, the antioxidant, anti-hyperlipidaemic, anti-diabetic, anti-cancerous, anti-microbial, and cardioprotective properties of Kachri have been reported. The fruit has a good nutritional value in terms of high percentages of protein, carbohydrates, essential fatty acids, phenols, and various phytochemicals. Also, gamma radiation treatment has been used on this crop to reduce total bacterial counts (TBC), ensuring safety from pathogens during the storage period of the fruit and its products. These facts lay down a foundation for the development of functional food formulations and nutraceuticals of medicinal value from this functionally rich crop. Processing of traditionally valuable arid region foods into functional foods and products can potentially increase the livelihood and nutritional security of people globally. Therefore, this review focuses on the therapeutic and pharmacological potentials of the Kachri fruit in the management of non-communicable diseases (NCDs) namely, diabetes, cancer, and hyperlipidemia.

Graphical Abstract

Graphical abstract of the review

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

5-FU:

5-Fluorouracil

CuB:

Cucurbitacin B

CYP450:

Cytochrome P450

DNA:

Deoxyribonucleic acid

DPPH:

α-Diphenyl-β-picrylhydrazyl

EAC:

Ehrlich Ascites Carcinoma

GHP:

Good harvesting practices

GMP:

Good manufacturing practices

HDLC:

High-density lipoprotein cholesterol

HMG- CoA:

Hydroxymethylglutaryl-coenzyme A

HPLC:

High-performance liquid chromatography

IDDM:

Insulin dependent diabetes mellitus

JAK:

Janus kinase

LDLC:

Low-density lipoprotein cholesterol

LMICS:

Low- and middle-income countries

MECC:

Methanolic extract of Cucumis callosus

MFCC:

Methanolic fruit extract of C. callosus

MPCC:

Methanolic pericarp extract of C. callosus

MSCC:

Methanolic seed extract of C. callosus

NCDs:

Non communicable diseases

NIDDM:

Non-insulin dependent diabetes mellitus

NUS:

Neglected and Underutilized Species

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator 1-α

SDG:

Sustainable Development Goals

STAT:

Signal transducers and activators of transcription

STZ:

Streptozotocin

TBC:

Total bacterial counts

TC:

Total cholesterol

TG:

Triglyceride

UN:

United Nations

UNDP:

United Nations development programme

UNICEF:

United Nations children's emergency fund

WHO:

World health organization

References

  1. Jailobaeva K, Falconer J, Loffreda G et al (2021) An analysis of policy and funding priorities of global actors regarding noncommunicable disease in low- and middle-income countries. Glob Health 17(1):68. https://doi.org/10.1186/s12992-021-00713-4

    Article  Google Scholar 

  2. Ayomoh F (2021) The rising global tide of non-communicable diseases: A call for decisive action. JOHPEC 1(1). Retrieved from: https://johpec.lse.ac.uk/articles/36

  3. Duhan A, Chauhan BM, Punia D (1992) Nutritional value of some non-conventional plant foods of India. Plant Foods Hum Nutr 42(3):193–200. https://doi.org/10.1007/BF02193926

    Article  CAS  PubMed  Google Scholar 

  4. Chand T, Bhandari A, Kumawat BK et al (2012) Phytochemical investigation of seed of Cucumis callosus (Rottl.) Cogn. Res J Pharm Biol Chem Sci 3(2):570–576

    CAS  Google Scholar 

  5. Chaturvedi Y, Nagar R (2001) Levels of β-carotene and effects of processing on selected fruits and vegetables of the arid zone of India. Plant Foods Hum Nutr 56(2):127–132. https://doi.org/10.1023/A:1011174400658

    Article  CAS  PubMed  Google Scholar 

  6. Nathawat NS, Joshi P, Chhipa BG et al (2013) Effect of gamma radiation on microbial safety and nutritional quality of Kachri (Cucumis callosus). J Food Sci Technol 50(4):723–730. https://doi.org/10.1007/s13197-011-0380-6

    Article  CAS  PubMed  Google Scholar 

  7. Rangkadilok N, Pholphana N, Mahidol C et al (2010) Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chem 122(3):724–730. https://doi.org/10.1016/j.foodchem.2010.03.044

    Article  CAS  Google Scholar 

  8. Mariod A, Matthaus B (2008) Fatty acids, tocopherols, sterols, phenolic profiles and oxidative stability of cucumis melo var. agrestis oil. J. Food Lipids 15(1):56–67. https://doi.org/10.1111/j.1745-4522.2007.00102.x

    Article  CAS  Google Scholar 

  9. Wendt J, Knudsen B, Frame LA (2023) Plant-based antioxidant activity in the human body: a comprehensive review of hormetic influences driving positive clinical outcomes. Preprints.org 2023020006. https://doi.org/10.20944/preprints202302.0006.v1

  10. Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F (2022) The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 48(3):611–633. https://doi.org/10.1002/biof.1831

    Article  CAS  PubMed  Google Scholar 

  11. Østergaard JA, Cooper ME, Jandeleit-Dahm KAM (2020) Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol 33(5):917–929. https://doi.org/10.1007/s40620-020-00749-6

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Zhang S-L (2021) The role of flavonoids in the prevention and management of cardiovascular complications: a narrative review. Ann Palliat Med 10(7):8254–8263. https://doi.org/10.21037/apm-21-1343

    Article  PubMed  Google Scholar 

  13. Yadav JP, Grishina M, Shahbaaz M et al (2022) Cucumis melo var. momordica as a potent antidiabetic, antioxidant and possible anticovid alternative: investigation through experimental and computational methods. Chem Biodivers 19:e202200200. https://doi.org/10.1002/cbdv.202200200

    Article  CAS  PubMed  Google Scholar 

  14. Varadharajan R, Rajalingam D, Palani S (2016) GCMS/MS analysis and cardioprotective potential of cucumis callosus on doxorubicin induced cardiotoxicity in rats. Int J Pharm Sci 8(9):239–245. https://doi.org/10.22159/ijpps.2016.v8i9.13292

    Article  CAS  Google Scholar 

  15. Verma J, Rathore DS, Agarwal S, Tripathi V (2015) Effects of Citrullus colocynthis and Cucumis callosus extract on blood glucose levels in alloxan-induced diabetic rats. SGVU Int J Env Sci Technol 1(1):50–56

    Google Scholar 

  16. Chand T, Bhandari A, Bhupendra KK et al (2012) In vitro antioxidant activity of alcoholic extract of seeds of Cucumis callosus (rottl.). Cogn Am J PharmTech Res 2(3):2249–3387

    Google Scholar 

  17. Pandey A, Ranjan P, Ahlawat SP et al (2021) Studies on fruit morphology, nutritional and floral diversity in less-known melons (Cucumis melo L.) of India. Genet Resour Crop Evol 68:1453–1470. https://doi.org/10.1007/s10722-020-01075-3

    Article  CAS  Google Scholar 

  18. Dahot MU, Mangrio SM, Khaskhely MH, Dewani VK (1999) Nutrient composition of chibber fruit. Commun Soil Sci Plant Anal 30(1–2):75–82. https://doi.org/10.1080/00103629909370185

    Article  CAS  Google Scholar 

  19. Meena SR, Singh RS, Sharma BD, Singh D (2016) Most favourite traditional cucurbitaceous vegetables and their utilization pattern in Thar desert of the western Rajasthan. India Indian J Tradit Knowl 15(3):385–394

    Google Scholar 

  20. Swamy KRM (2017) Origin, distribution and systematics of culinary cucumber (Cucumis melo subsp. agrestis var. conomon). J Hortic Sci 12(1):1–22. https://jhs.iihr.res.in/index.php/jhs/article/view/64

  21. Manchali S, Chidambara Murthy KN, Vishnuvardana Patil BS (2021) Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants 10(9):1755. https://doi.org/10.3390/plants10091755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haldhar SM, Samadia DK, Bhargava R et al (2018) Host plant accessions determine bottom-up effect of snapmelon (Cucumis melo var. momordica) against melon fly (Bactrocera cucurbitae (Coquillett)). Breed Sci 68(5):499–507. https://doi.org/10.1270/jsbbs.17065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Panda SP, Rajsekhar RA, Panigrahy UP (2018) Evaluation of anticancer activity of Cucumis callosus against ehrlich’s ascites carcinoma bearing mice. Asian J Pharm Clin Res 11(10):438–442. https://doi.org/10.22159/ajpcr.2018.v11i10.27439

    Article  CAS  Google Scholar 

  24. Rolim PM, Seabra LMJ, de Macedo GR (2020) Melon by-products: biopotential in human health and food processing. Food Rev Int 36(1):15–38. https://doi.org/10.1080/87559129.2019.1613662

    Article  CAS  Google Scholar 

  25. Solval KM, Sundararajan S, Alfaro L, Sathivel S (2012) Development of cantaloupe (Cucumis melo) juice powders using spray drying technology. LWT - Food Sci Technol 46(1):287–293. https://doi.org/10.1016/j.lwt.2011.09.017

    Article  CAS  Google Scholar 

  26. Pagare S, Bhatia M, Tripathi N et al (2015) Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  27. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  28. Chakravarthy HL (1982) Fascicles of the flora of India 11. Botanical Survey of India

  29. Chakravarthy HL (1959) Monograph on Indian cucurbitaceae. Records of the Botanical Survey of India

  30. Yasir M, Sultana B, Nigam PS, Owusu-Apenten R (2016) Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food Chem 199:307–313. https://doi.org/10.1016/j.foodchem.2015.11.138

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasulu C, Ramgopal M, Ramanjaneyulu G et al (2018) Syringic acid (SA) - A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1016/j.biopha.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Yao J, Han C et al (2016) Quercetin, inflammation and immunity. Nutrients 8(3):167. https://doi.org/10.3390/nu8030167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2):315–325. https://doi.org/10.1016/j.canlet.2008.03.046

    Article  CAS  PubMed  Google Scholar 

  34. Wakimoto N, Yin D, O’Kelly J et al (2008) Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 99(9):1793–1797. https://doi.org/10.1111/j.1349-7006.2008.00899.x

    Article  CAS  PubMed  Google Scholar 

  35. Zou H, Ye H, Kamaraj R et al (2021) A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine 92:153736. https://doi.org/10.1016/j.phymed.2021.153736

    Article  CAS  PubMed  Google Scholar 

  36. Dai S, Wang C, Zhao X et al (2023) Cucurbitacin B: a review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 187:106587. https://doi.org/10.1016/j.phrs.2022.106587

    Article  CAS  PubMed  Google Scholar 

  37. Mani R, Natesan V (2018) Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196. https://doi.org/10.1016/j.phytochem.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Ke H, Li Y et al (2021) Malvidin-3- O -glucoside from blueberry ameliorates nonalcoholic fatty liver disease by regulating transcription factor eb-mediated lysosomal function and activating the Nrf2/ARE signaling pathway. J Agric Food Chem 69(16):4663–4673. https://doi.org/10.1021/acs.jafc.0c06695

    Article  CAS  PubMed  Google Scholar 

  39. Li D, Rui Y, Guo S et al (2021) Ferulic acid: a review of its pharmacology, pharmacokinetics and derivatives. Life Sci 284:119921. https://doi.org/10.1016/j.lfs.2021.119921

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Shen B, Lv C et al (2023) Methyl gallate prevents oxidative stress induced apoptosis and ECM degradation in chondrocytes via restoring Sirt3 mediated autophagy and ameliorates osteoarthritis progression. Int Immunopharmacol 114:109489. https://doi.org/10.1016/j.intimp.2022.109489

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed AZ, Satyam SM, Shetty P, D’Souza MR (2021) Methyl gallate attenuates doxorubicin-induced cardiotoxicity in rats by suppressing oxidative stress. Scientifica (Cairo) 2021:1–12. https://doi.org/10.1155/2021/6694340

    Article  CAS  Google Scholar 

  42. Kumar S, Parveen F, Goyal S, Chauhan A (2008) Indigenous herbal coolants for combating heat stress in the hot Indian Arid Zone. Indian J Tradit Knowl 7(4):679–682

    Google Scholar 

  43. Ediriweera ERHSS, Ratnasooriya WD (2009) Ayu newsletters ayurved university. Sri Lanka 30:373–391

    Google Scholar 

  44. Gadekar NK, Raut PS, Bhagyashree M, Sanap GS (2023) On Cucumis callocus. WJPR 12(5):2109–2120. https://doi.org/10.20959/wjpr20235-27734

    Article  Google Scholar 

  45. Martirosyan DM, Singh J (2015) A new definition of functional food by FFC: what makes a new definition unique? Funct Food Health Dis 5(6):209–223. https://doi.org/10.31989/ffhd.v5i6.183

    Article  Google Scholar 

  46. Gupta L, Tiwari G, Garg R (2015) Documentation of ethnoveterinary remedies of camel diseases in Rajasthan, India. Indian J Tradit Knowl 14(3):447–453. http://nopr.niscpr.res.in/handle/123456789/32101

  47. Vishwakarma VK, Gupta JK, Upadhyay PK (2017) Pharmacological importance of Cucumis melo L.: an overview. Asian J Pharm Clin Res 10(3):8–12. https://doi.org/10.22159/ajpcr.2017.v10i3.13849

    Article  CAS  Google Scholar 

  48. Ijaz N, Welsh S, Boon H (2022) Toward a ‘green allopathy’? Naturopathic paradigm and practice in Ontario, Canada. Soc Sci Med 315:115557. https://doi.org/10.1016/j.socscimed.2022.115557

    Article  PubMed  Google Scholar 

  49. Cai Y, Fang X, He C et al (2015) Cucurbitacins: a systematic review of the phytochemistry and anticancer activity. Am J Chin Med (Gard City N Y) 43(7):1331–1350. https://doi.org/10.1142/S0192415X15500755

    Article  CAS  Google Scholar 

  50. Chen N, Li P, Liu L et al (2023) Cucurbitacin IIb extracted from Hemsleya penxianensis induces cell cycle arrest and apoptosis in bladder cancer cells by regulating cell cycle checkpoints and mitochondrial apoptotic pathway. Plant Foods Hum Nutr 78(2):483–492. https://doi.org/10.1007/s11130-023-01058-6

    Article  CAS  PubMed  Google Scholar 

  51. Sharma S, Singh NP, Pandey M, Singh A (2021) Different complications of diabetes mellitus on human body: a review. Ann Rom Soc Cell Biol 25(7):592–601

    Google Scholar 

  52. Forouhi NG, Wareham NJ (2014) Epidemiology of diabetes. Medicine 42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007

    Article  PubMed  Google Scholar 

  53. Pelkonen O, Turpeinen M, Hakkola J et al (2008) Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82(10):667–715. https://doi.org/10.1007/s00204-008-0332-8

    Article  CAS  PubMed  Google Scholar 

  54. Chukwunonso Obi B, Chinwuba Okoye T, Okpashi VE et al (2016) Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. J Diabetes Res 2016:1–5. https://doi.org/10.1155/2016/1635361

    Article  CAS  Google Scholar 

  55. Panda SP, Sarangi AK, Panigrahy UP (2018) Isolation of cucurbitacin-b from Cucumis callosus and its hypoglycemic effect in isolated rat enterocytes. Int J Pharm Pharm Sci 10(5):123–129. https://doi.org/10.22159/ijpps.2018v10i5.25788

    Article  CAS  Google Scholar 

  56. Panda S, Chakraborty M, Majumder P et al (2016) Antidiabetic, antioxidant and anti-hyperlipidaemic activity of Cucumis callosus in streptozotocin-induced diabetic rats. Int J Pharm Sci Res 7(5):1978–1984. https://doi.org/10.13040/IJPSR.0975-8232.7(5).1978-84

    Article  CAS  Google Scholar 

  57. Tundis R, Loizzo MR, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10(4):315–331. https://doi.org/10.2174/138955710791331007

    Article  CAS  PubMed  Google Scholar 

  58. Dixit Y, Kar A (2010) Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice. Plant Foods Hum Nutr 65(3):284–289. https://doi.org/10.1007/s11130-010-0175-3

    Article  CAS  PubMed  Google Scholar 

  59. Azizi R, Goodarzi MT, Salemi Z (2014) Effect of biochanin A on serum visfatin level of streptozocin-induced diabetic rats. Iran Red Crescent Med J 16(9):e15424. https://doi.org/10.5812/ircmj.15424

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jena AK, Deuri R, Sharma P, Singh SP (2018) Underutilized vegetable crops and their importance. J Pharmacogn Phytochem 7(5):402–407

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. K. and D. proposed the idea for the literat ure review and performed the literature search. D., P.P, S. and S.K. performed the literature search and drafted the manuscript. D. and P.P. wrote the main manuscript text. A.K., RE. A., M.G. and S.S critically revised and reviewed the manuscript.

Corresponding author

Correspondence to Anita Kumari.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, Kumari, A., Prajapati, P. et al. Pharmacological and Therapeutic Potential of Cucumis callosus: a Novel Nutritional Powerhouse for the Management of Non-communicable Diseases. Plant Foods Hum Nutr 78, 630–642 (2023). https://doi.org/10.1007/s11130-023-01098-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01098-y

Keywords

Navigation